Mercurial > repos > devteam > canonical_correlation_analysis
view cca.py @ 0:9bc0c48a027f draft default tip
Imported from capsule None
author | devteam |
---|---|
date | Mon, 19 May 2014 12:34:48 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python import sys, string from rpy import * import numpy def stop_err(msg): sys.stderr.write(msg) sys.exit() infile = sys.argv[1] x_cols = sys.argv[2].split(',') y_cols = sys.argv[3].split(',') x_scale = x_center = "FALSE" if sys.argv[4] == 'both': x_scale = x_center = "TRUE" elif sys.argv[4] == 'center': x_center = "TRUE" elif sys.argv[4] == 'scale': x_scale = "TRUE" y_scale = y_center = "FALSE" if sys.argv[5] == 'both': y_scale = y_center = "TRUE" elif sys.argv[5] == 'center': y_center = "TRUE" elif sys.argv[5] == 'scale': y_scale = "TRUE" std_scores = "FALSE" if sys.argv[6] == "yes": std_scores = "TRUE" outfile = sys.argv[7] outfile2 = sys.argv[8] fout = open(outfile,'w') elems = [] for i, line in enumerate( file ( infile )): line = line.rstrip('\r\n') if len( line )>0 and not line.startswith( '#' ): elems = line.split( '\t' ) break if i == 30: break # Hopefully we'll never get here... if len( elems )<1: stop_err( "The data in your input dataset is either missing or not formatted properly." ) x_vals = [] for k,col in enumerate(x_cols): x_cols[k] = int(col)-1 x_vals.append([]) y_vals = [] for k,col in enumerate(y_cols): y_cols[k] = int(col)-1 y_vals.append([]) skipped = 0 for ind,line in enumerate( file( infile )): if line and not line.startswith( '#' ): try: fields = line.strip().split("\t") valid_line = True for col in x_cols+y_cols: try: assert float(fields[col]) except: skipped += 1 valid_line = False break if valid_line: for k,col in enumerate(x_cols): try: xval = float(fields[col]) except: xval = NaN# x_vals[k].append(xval) for k,col in enumerate(y_cols): try: yval = float(fields[col]) except: yval = NaN# y_vals[k].append(yval) except: skipped += 1 x_vals1 = numpy.asarray(x_vals).transpose() y_vals1 = numpy.asarray(y_vals).transpose() x_dat= r.list(array(x_vals1)) y_dat= r.list(array(y_vals1)) try: r.suppressWarnings(r.library("yacca")) except: stop_err("Missing R library yacca.") set_default_mode(NO_CONVERSION) try: xcolnames = ["c%d" %(el+1) for el in x_cols] ycolnames = ["c%d" %(el+1) for el in y_cols] cc = r.cca(x=x_dat, y=y_dat, xlab=xcolnames, ylab=ycolnames, xcenter=r(x_center), ycenter=r(y_center), xscale=r(x_scale), yscale=r(y_scale), standardize_scores=r(std_scores)) ftest = r.F_test_cca(cc) except RException, rex: stop_err("Encountered error while performing CCA on the input data: %s" %(rex)) set_default_mode(BASIC_CONVERSION) summary = r.summary(cc) ncomps = len(summary['corr']) comps = summary['corr'].keys() corr = summary['corr'].values() xlab = summary['xlab'] ylab = summary['ylab'] for i in range(ncomps): corr[comps.index('CV %s' %(i+1))] = summary['corr'].values()[i] ftest=ftest.as_py() print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) print >>fout, "#Correlation\t%s" %("\t".join(["%.4g" % el for el in corr])) print >>fout, "#F-statistic\t%s" %("\t".join(["%.4g" % el for el in ftest['statistic']])) print >>fout, "#p-value\t%s" %("\t".join(["%.4g" % el for el in ftest['p.value']])) print >>fout, "#X-Coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) for i,val in enumerate(summary['xcoef']): print >>fout, "%s\t%s" %(xlab[i], "\t".join(["%.4g" % el for el in val])) print >>fout, "#Y-Coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) for i,val in enumerate(summary['ycoef']): print >>fout, "%s\t%s" %(ylab[i], "\t".join(["%.4g" % el for el in val])) print >>fout, "#X-Loadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) for i,val in enumerate(summary['xstructcorr']): print >>fout, "%s\t%s" %(xlab[i], "\t".join(["%.4g" % el for el in val])) print >>fout, "#Y-Loadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) for i,val in enumerate(summary['ystructcorr']): print >>fout, "%s\t%s" %(ylab[i], "\t".join(["%.4g" % el for el in val])) print >>fout, "#X-CrossLoadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) for i,val in enumerate(summary['xcrosscorr']): print >>fout, "%s\t%s" %(xlab[i], "\t".join(["%.4g" % el for el in val])) print >>fout, "#Y-CrossLoadings\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) for i,val in enumerate(summary['ycrosscorr']): print >>fout, "%s\t%s" %(ylab[i], "\t".join(["%.4g" % el for el in val])) r.pdf( outfile2, 8, 8 ) #r.plot(cc) for i in range(ncomps): r.helio_plot(cc, cv = i+1, main = r.paste("Explained Variance for CV",i+1), type = "variance") r.dev_off()