Mercurial > repos > devteam > gffread
view gffread.xml @ 9:3e436657dcd0 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/gffread commit 0d019235fcfc835b99d5651b0bc4fd0da06707ac
author | iuc |
---|---|
date | Fri, 15 Dec 2023 19:39:24 +0000 |
parents | 154d00cbbf2d |
children |
line wrap: on
line source
<tool id="gffread" name="gffread" version="@GALAXY_TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.05"> <description>Filters and/or converts GFF3/GTF2 records</description> <macros> <!-- the version of this tool must not be lowered since in the past 2.x was used lets use small increments and hope that gffread catches up one day --> <token name="@GALAXY_TOOL_VERSION@">2.2.1.4</token> <token name="@TOOL_VERSION@">0.12.7</token> <token name="@VERSION_SUFFIX@">0</token> <xml name="fasta_output_select"> <param name="fa_outputs" type="select" display="checkboxes" multiple="true" label="Select fasta outputs"> <option value="-w exons.fa">fasta file with spliced exons for each GFF transcript (-w)</option> <option value="-x cds.fa">fasta file with spliced CDS for each GFF transcript (-x)</option> <option value="-y pep.fa">protein fasta file with the translation of CDS for each record (-y)</option> <option value="-W">for each fasta: record the exon coordinates projected onto the spliced sequence (-W)</option> <option value="-S">for protein fasta: use '*' instead of '.' as stop codon translation (-S)</option> </param> </xml> <xml name="ref_filtering_select"> <param name="ref_filtering" type="select" display="checkboxes" multiple="true" label="reference based filters"> <option value="-N">discard multi-exon mRNAs that have any intron with a non-canonical splice site consensus, i.e. not GT-AG, GC-AG or AT-AC (-N)</option> <option value="-J">discard any mRNAs that either lack initial START codon or the terminal STOP codon, or have an in-frame stop codon (-J)</option> <option value="-V">discard any mRNAs with CDS having in-frame stop codons (-V)</option> <option value="-H">check and adjust the starting CDS phase if the original phase leads to a translation with an in-frame stop codon (-H with -V)</option> <!-- gffread bug: B not in missing from param to the arg parser <option value="-B">single-exon transcripts are also checked on the opposite strand (-B with -V)</option> --> </param> </xml> <xml name="trackname"> <param argument="-t" name="tname" type="text" value="" optional="true" label="Trackname to use in the second column of each GFF output line" help=""> <validator type="regex">\w+</validator> </param> </xml> <xml name="merge_opts"> <option value="-K">also collapse shorter, fully contained transcripts with fewer introns than the container (-K)</option> <option value="-Q">remove the containment restriction: multi-exon transcripts will be collapsed if just their introns match, while single-exon transcripts can partially overlap 80% (-Q)</option> <option value="-d dupinfo">output collapsing info (-d)</option> </xml> <xml name="cluster_opts"> <option value="--force-exons"> make sure that the lowest level GFF features are printed as 'exon' features (--force-exons)</option> <option value="-Z">merge close exons into a single exon (for intron size < 4) (-Z)</option> </xml> <xml name="merge_opt_sel"> <param name="merge_options" type="select" display="checkboxes" multiple="true" label="Merge options"> <expand macro="cluster_opts" /> <expand macro="merge_opts" /> </param> </xml> <xml name="cluster_opt_sel"> <param name="merge_options" type="select" display="checkboxes" multiple="true" label="Cluster options"> <expand macro="cluster_opts" /> </param> </xml> </macros> <xrefs> <xref type="bio.tools">gffread</xref> </xrefs> <requirements> <requirement type="package" version="@TOOL_VERSION@">gffread</requirement> </requirements> <version_command>gffread --version</version_command> <command detect_errors="aggressive"> <![CDATA[ #if $reference_genome.source == 'history': ln -s '$reference_genome.genome_fasta' genomeref.fa && #end if gffread '$input' #if $input.ext.startswith("bed") --in-bed #end if #if $reference_genome.source == 'cached': -g '${reference_genome.fasta_indexes.fields.path}' #if $reference_genome.ref_filtering and str($reference_genome.ref_filtering) != '': #echo ' '.join(str($reference_genome.ref_filtering).split(',')) #end if #elif $reference_genome.source == 'history': -g genomeref.fa #if $reference_genome.ref_filtering and str($reference_genome.ref_filtering) != '': #echo ' '.join(str($reference_genome.ref_filtering).split(',')) #end if #end if #if $filtering and str($filtering) != '': #echo " " #echo ' '.join(str($filtering).split(',')) #end if #if $maxintron and $maxintron > 0: -i $maxintron #end if #if $region.region_filter == 'filter': -r '$region.range' $region.discard_partial #end if #if $merging.merge_sel != 'none': $merging.merge_cmd #if $merging.merge_options: #echo ' '.join(str($merging.merge_options).split(',')) #end if #end if #if $chr_replace: -m '$chr_replace' #end if $full_gff_attribute_preservation $decode_url $expose ## ## Although documented, does not appear to be used in the gffread code ## #if $seq_info: ## -A -s "$seq_info" ## #end if ## ## outputs #if $reference_genome.source != 'none': #if $reference_genome.fa_outputs and str($reference_genome.fa_outputs) != '': #echo ' ' + ' '.join(str($reference_genome.fa_outputs).split(',')) #end if #end if #if $gffs.gff_fmt != 'none': #if $gffs.gff_fmt != 'bed' and $gffs.tname: -t '$gffs.tname' #end if #if $gffs.gff_fmt == 'gff': #if $input.datatype.file_ext == 'gtf': $gffs.ensembl #end if #end if #if $gffs.gff_fmt == 'gtf' -T #elif $gffs.gff_fmt == 'bed' --bed #end if -o output.$gffs.gff_fmt #else if 'fa_outputs' not in $reference_genome or '.fa' not in str($reference_genome['fa_outputs']) -o output.gff #end if ## Missing options ## ## --ids ## --nids ## -l ## --jmatch ## --nc ## --ignore-locus ## -A -s (see above) ## --sort-alpha : chromosomes (reference sequences) are sorted alphabetically ## --sort-by : sort the reference sequences by the order in which their ## names are given in the <refseq.lst> file ## Misc ## --keep-exon-attrs : for -F option, do not attempt to reduce redundant ## --attrs ## --keep-genes : in transcript-only mode (default), also preserve gene records ## --keep-comments: for GFF3 input/output, try to preserve comments ## -B (see above) ## -P ## --add-hasCDS : add a "hasCDS" attribute with value "true" for transcripts ## that have CDS features ## --adj-stop stop codon adjustment: enables -P and performs automatic ## adjustment of the CDS stop coordinate if premature or downstream ## --in-tlf: input GFF-like one-line-per-transcript format without exon/CDS ## features (see --tlf option below); automatic if the input ## filename ends with .tlf) ## --stream: fast processing of input GFF/BED transcripts as they are received ## ((no sorting, exons must be grouped by transcript in the input data) ## Clustering ## -Y ## Output ## --gene2exon ## --t-adopt ## -j ## --w-add ## --w-nocds ]]> </command> <inputs> <param name="input" type="data" format="bed,gff3,gtf" label="Input BED, GFF3 or GTF feature file"/> <!-- filtering --> <param name="filtering" type="select" display="checkboxes" multiple="true" label="filters"> <option value="-U">discard single-exon transcripts (-U)</option> <option value="-C">coding only: discard mRNAs that have no CDS feature (-C)</option> <option value="-G">only parse additional exon attributes from the first exon and move them to the mRNA level (useful for GTF input) (-G)</option> <option value="-O">process also non-transcript GFF records (by default non-transcript records are ignored) (-O)</option> <option value="--no-pseudo">filter out records matching the 'pseudo' keyword (--no-pseudo)</option> </param> <conditional name="region"> <param name="region_filter" type="select" label="Filter by genome region"> <option value="none">No</option> <option value="filter">Yes</option> </param> <when value="none"/> <when value="filter"> <param argument="-r" name="range" type="text" value="" label="Only show transcripts overlapping coordinate range"> <help><![CDATA[ [['strand']'chr':]'start'..'end' <br> examples: <br> 1000..500000 <br> chr1:1000..500000 <br> +chr1:1000..500000 <br> -chr1:1000..500000 ]]> </help> <validator type="regex">(([+-])?(\w+:))?\d+\.\.\d+</validator> </param> <param argument="-R" name="discard_partial" type="boolean" truevalue="-R" falsevalue="" checked="false" label="Discard all transcripts that are not fully contained within the given range" help=""/> </when> </conditional> <param argument="-i" name="maxintron" type="integer" value="" optional="true" min="0" label="Filter out transcipts with large introns" help="If set, discard transcripts having an intron larger"/> <param argument="-m" name="chr_replace" type="data" format="tabular" optional="true" label="Replace reference sequence names" > <help><![CDATA[ chr_replace is a reference sequence replacement table consisting of 2 columns: "original_ref_ID" "new_ref_ID"<br> It is useful for switching between Ensembl and UCSC naming conventions <br> NOTE: GFF records on reference sequences that are not found among the "original_ref_ID" entries in this file will be filtered out ]]> </help> </param> <!-- Although documented, does not appear to be used in the gffread code <param name="seq_info" type="data" format="tabular" optional="true" label="Use the description field as the value for a 'descr' attribute to the GFF record"> <help> (-s seq_info.fsize -A) useful with mRNA/EST/protein mappings <br> seq_info input file is a 3 column tab-delimited file providing this info for each of the mapped sequences: <br> "seq-name" "seq-length" "seq-description" <br> </help> </param> --> <!-- merging --> <conditional name="merging"> <param name="merge_sel" type="select" label="Transcript merging" help=""> <option value="none">none</option> <option value="merge">merge: cluster the input transcripts into loci, collapsing matching transcripts (--merge)</option> <option value="cluster">cluster-only: merge but without collapsing matching transcripts (--cluster-only)</option> </param> <when value="none"/> <when value="merge"> <param name="merge_cmd" type="hidden" value="--merge"/> <expand macro="merge_opt_sel" /> </when> <when value="cluster"> <param name="merge_cmd" type="hidden" value="--cluster-only"/> <expand macro="cluster_opt_sel" /> </when> </conditional> <!-- reference sequence file --> <!-- Error: -g option is required for options -w, -x, -y, -V, -N, -M --> <conditional name="reference_genome"> <param name="source" type="select" label="Reference Genome" help="NOTE: Required for fasta outputs"> <option value="none">none</option> <option value="cached">Cached reference data</option> <option value="history">From your history</option> </param> <when value="none"/> <when value="cached"> <param argument="-g" name="fasta_indexes" type="select" label="Source FASTA Sequence"> <options from_data_table="all_fasta"/> </param> <expand macro="ref_filtering_select" /> <expand macro="fasta_output_select" /> </when> <when value="history"> <param argument="-g" name="genome_fasta" type="data" format="fasta" label="Genome Reference Fasta"/> <expand macro="ref_filtering_select" /> <expand macro="fasta_output_select" /> </when> </conditional> <!-- outputs --> <conditional name="gffs"> <param name="gff_fmt" type="select" label="Feature File Output" help="(-o output.gff3|output.gtf)"> <option value="none">none</option> <option value="gff">GFF</option> <option value="gtf">GTF</option> <option value="bed">BED</option> </param> <when value="none"/> <when value="gff"> <param argument="-L" name="ensembl" type="boolean" truevalue="-L" falsevalue="" checked="false" label="Ensembl GTF to GFF3 conversion" help=""/> <expand macro="trackname" /> </when> <when value="gtf"> <expand macro="trackname" /> </when> <when value="bed"/> </conditional> <param argument="-F" name="full_gff_attribute_preservation" type="boolean" truevalue="-F" falsevalue="" checked="false" label="full GFF attribute preservation (all attributes are shown)" help=""/> <param argument="-D" name="decode_url" type="boolean" truevalue="-D" falsevalue="" checked="false" label="decode url encoded characters within attributes" help=""/> <param argument="-E" name="expose" type="boolean" truevalue="-E" falsevalue="" checked="false" label="warn about duplicate transcript IDs and other potential problems with the given GFF/GTF records" help=""/> </inputs> <outputs> <data name="output_gff" format="gff3" metadata_source="input" label="${tool.name} on ${on_string}: gff3" from_work_dir="output.gff"> <!-- output gff also if the user deselected all outputs: none is selected and all .fa outputs are disabled --> <filter>gffs['gff_fmt'] == 'gff' or (gffs['gff_fmt'] == 'none' and ('fa_outputs' not in reference_genome or '.fa' not in str(reference_genome['fa_outputs'])))</filter> </data> <data name="output_gtf" format="gtf" metadata_source="input" label="${tool.name} on ${on_string}: gtf" from_work_dir="output.gtf"> <filter>gffs['gff_fmt'] == 'gtf'</filter> </data> <data name="output_bed" format="bed" metadata_source="input" label="${tool.name} on ${on_string}: bed" from_work_dir="output.bed"> <filter>gffs['gff_fmt'] == 'bed'</filter> </data> <data name="output_exons" format="fasta" label="${tool.name} on ${on_string}: exons.fa" from_work_dir="exons.fa"> <filter>'fa_outputs' in reference_genome and str(reference_genome['fa_outputs']).find('exons.fa') > 0 </filter> </data> <data name="output_cds" format="fasta" label="${tool.name} on ${on_string}: cds.fa" from_work_dir="cds.fa"> <filter>'fa_outputs' in reference_genome and str(reference_genome['fa_outputs']).find('cds.fa') > 0</filter> </data> <data name="output_pep" format="fasta" label="${tool.name} on ${on_string}: pep.fa" from_work_dir="pep.fa"> <filter>'fa_outputs' in reference_genome and str(reference_genome['fa_outputs']).find('pep.fa') > 0</filter> </data> <data name="output_dupinfo" format="txt" label="${tool.name} on ${on_string}: dupinfo" from_work_dir="dupinfo"> <filter>'merge_options' in merging and merging['merge_options'].find('dupinfo') > 0</filter> </data> </outputs> <tests> <test expect_num_outputs="1"> <param name="input" ftype="gtf" value="Homo_sapiens.GRCh37_19.71.gtf"/> <param name="gff_fmt" value="gff"/> <output name="output_gff" file="Homo_sapiens.GRCh37_19.71.gff3" ftype="gff3" lines_diff="4" /> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <!-- mapping --> <test expect_num_outputs="1"> <param name="input" ftype="gtf" value="Homo_sapiens.GRCh37_19.71.gtf"/> <param name="gff_fmt" value="gff"/> <param name="chr_replace" ftype="tabular" value="chr_replace"/> <output name="output_gff" ftype="gff3"> <assert_contents> <has_n_lines n="314"/> <has_line_matching expression="^chr.*"/> <has_line_matching expression="^1.*" negate="true"/> </assert_contents> </output> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <!-- none output and all .fa outputs deselected .. gff is produced anyway, since we need one output --> <test expect_num_outputs="1"> <param name="input" ftype="gtf" value="Homo_sapiens.GRCh37_19.71.gtf"/> <output name="output_gff" file="Homo_sapiens.GRCh37_19.71.gff3" ftype="gff3" lines_diff="4" /> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <!-- test ensemble gtf to gff conversion --> <test expect_num_outputs="1"> <param name="input" ftype="gtf" value="Homo_sapiens.GRCh37_19.71.gtf"/> <conditional name="gffs"> <param name="gff_fmt" value="gff"/> <param name="ensembl" value="true"/> <param name="tname" value="track name"/> </conditional> <output name="output_gff" file="Homo_sapiens.GRCh37_19.71_ensemble.gff3" ftype="gff3" lines_diff="4" /> <assert_command> <has_text text="-L"/> <has_text text="-t 'track name'"/> </assert_command> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <test expect_num_outputs="1"> <param name="input" ftype="gtf" value="Homo_sapiens.GRCh37_19.71.gtf"/> <param name="gff_fmt" value="gff"/> <output name="output_gff" file="Homo_sapiens.GRCh37_19.71.gff3" ftype="gff3" lines_diff="4" /> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <test expect_num_outputs="1"> <param name="input" ftype="gtf" value="ecoli-k12.gff3"/> <param name="gff_fmt" value="gff"/> <param name="full_gff_attribute_preservation" value="-F"/> <output name="output_gff" file="ecoli-k12.processed.gff3" ftype="gff3" lines_diff="4" /> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <!-- bed output --> <test expect_num_outputs="1"> <param name="input" ftype="gff3" value="Homo_sapiens.GRCh37_19.71.gff3"/> <param name="gff_fmt" value="bed"/> <output name="output_bed" ftype="bed"> <assert_contents> <has_n_lines n="42"/> <has_n_columns n="13"/> </assert_contents> </output> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <!-- bed input and test tname --> <test expect_num_outputs="1"> <param name="input" ftype="bed" value="Homo_sapiens.GRCh37_19.71.bed"/> <param name="gff_fmt" value="gff"/> <param name="tname" value="track name"/> <output name="output_bed" ftype="gff3"> <assert_contents> <has_n_lines n="388"/> <!-- this will work with https://github.com/galaxyproject/galaxy/pull/12528 --> <!-- <has_n_columns n="9" comment="#"/> --> <has_text text="track name"/> </assert_contents> </output> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <test expect_num_outputs="1"> <param name="input" ftype="gtf" value="Homo_sapiens.GRCh37_19.71.gtf"/> <param name="region_filter" value="filter"/> <param name="range" value="19:496500..504965"/> <param name="gff_fmt" value="gtf"/> <output name="output_gtf"> <assert_contents> <has_text text="ENST00000587541" /> <has_text text="ENST00000382683" /> </assert_contents> </output> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <test expect_num_outputs="1"> <param name="input" ftype="gtf" value="Homo_sapiens.GRCh37_19.71.gtf"/> <param name="region_filter" value="filter"/> <param name="range" value="19:496500..504965"/> <param name="discard_partial" value="true"/> <param name="gff_fmt" value="gtf"/> <output name="output_gtf"> <assert_contents> <not_has_text text="ENST00000587541" /> <has_text text="ENST00000382683" /> </assert_contents> </output> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <test expect_num_outputs="1"> <param name="input" ftype="gtf" value="Homo_sapiens.GRCh37_19.71.gtf"/> <param name="filtering" value="-C"/> <param name="region_filter" value="filter"/> <param name="range" value="19:496500..504965"/> <param name="gff_fmt" value="gtf"/> <output name="output_gtf"> <assert_contents> <not_has_text text="ENST00000587541" /> <has_text text="ENST00000382683" /> </assert_contents> </output> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <test expect_num_outputs="4"> <param name="input" ftype="gtf" value="Homo_sapiens.GRCh37_19.71.gtf"/> <param name="source" value="history"/> <param name="genome_fasta" ftype="fasta" value="Homo_sapiens.GRCh37.71.dna.chromosome.19.fa"/> <param name="fa_outputs" value="-w exons.fa,-x cds.fa,-y pep.fa"/> <param name="region_filter" value="filter"/> <param name="range" value="19:496500..504965"/> <param name="gff_fmt" value="gtf"/> <output name="output_gtf"> <assert_contents> <has_text text="ENST00000587541" /> <has_text text="ENST00000382683" /> </assert_contents> </output> <output name="output_exons"> <assert_contents> <has_text text="ENST00000346144 CDS=47-934" /> <has_text text="CTATTTAAGCGGCTTCCCCGCGGCCTCGGGACAGAGGGGACTGAGCATGGATTTCGGACTGGCCCTCCTG" /> </assert_contents> </output> <output name="output_cds"> <assert_contents> <has_text text="ENST00000346144" /> <has_text text="ATGGATTTCGGACTGGCCCTCCTGCTGGCGGGGCTTCTGGGGCTCCTCCTCGGCCAGTCCCTCCAGGTGA" /> </assert_contents> </output> <output name="output_pep"> <assert_contents> <has_text text="ENST00000346144" /> <has_text text="MDFGLALLLAGLLGLLLGQSLQVKPLQVEPPEPVVAVALGASRQLTCRLACADRGASVQWRGLDTSLGAV" /> </assert_contents> </output> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> <test expect_num_outputs="1"> <param name="input" ftype="gtf" value="stop_codons.gtf"/> <param name="source" value="history"/> <param name="genome_fasta" ftype="fasta" value="Homo_sapiens.GRCh37.71.dna.chromosome.19.fa"/> <param name="fa_outputs" value="-y pep.fa,-S"/> <output name="output_pep"> <assert_contents> <has_text text="ENST00000269812" /> <has_text text="PLRGLHPRV*LQTPLERCPCWPPAGGTGGCPHCLLHLRLLQSPTPTALSEGGGAGTEAQPVTDVDPGRG*" /> </assert_contents> </output> <assert_stdout> <has_n_lines n="0"/> </assert_stdout> </test> </tests> <help> <![CDATA[ **gffread Filters and/or converts GFF3/GTF2 records** The gffread command is documented with the stringtie_ package. .. _stringtie: http://ccb.jhu.edu/software/stringtie/gff.shtml#gffread gffread v0.12.7. Usage: :: gffread [-g <genomic_seqs_fasta> | <dir>] [-s <seq_info.fsize>] [-o <outfile>] [-t <trackname>] [-r [<strand>]<chr>:<start>-<end> [-R]] [--jmatch <chr>:<start>-<end>] [--no-pseudo] [-CTVNJMKQAFPGUBHZWTOLE] [-w <exons.fa>] [-x <cds.fa>] [-y <tr_cds.fa>] [-j ][--ids <IDs.lst> | --nids <IDs.lst>] [--attrs <attr-list>] [-i <maxintron>] [--stream] [--bed | --gtf | --tlf] [--table <attrlist>] [--sort-by <ref.lst>] [<input_gff>] Filter, convert or cluster GFF/GTF/BED records, extract the sequence of transcripts (exon or CDS) and more. By default (i.e. without -O) only transcripts are processed, discarding any other non-transcript features. Default output is a simplified GFF3 with only the basic attributes. Options: --ids discard records/transcripts if their IDs are not listed in <IDs.lst> --nids discard records/transcripts if their IDs are listed in <IDs.lst> -i discard transcripts having an intron larger than <maxintron> -l discard transcripts shorter than <minlen> bases -r only show transcripts overlapping coordinate range <start>..<end> (on chromosome/contig <chr>, strand <strand> if provided) -R for -r option, discard all transcripts that are not fully contained within the given range --jmatch only output transcripts matching the given junction -U discard single-exon transcripts -C coding only: discard mRNAs that have no CDS features --nc non-coding only: discard mRNAs that have CDS features --ignore-locus : discard locus features and attributes found in the input -A use the description field from <seq_info.fsize> and add it as the value for a 'descr' attribute to the GFF record -s <seq_info.fsize> is a tab-delimited file providing this info for each of the mapped sequences: <seq-name> <seq-length> <seq-description> (useful for -A option with mRNA/EST/protein mappings) Sorting: (by default, chromosomes are kept in the order they were found) --sort-alpha : chromosomes (reference sequences) are sorted alphabetically --sort-by : sort the reference sequences by the order in which their names are given in the <refseq.lst> file Misc options: -F keep all GFF attributes (for non-exon features) --keep-exon-attrs : for -F option, do not attempt to reduce redundant exon/CDS attributes -G do not keep exon attributes, move them to the transcript feature (for GFF3 output) --attrs <attr-list> only output the GTF/GFF attributes listed in <attr-list> which is a comma delimited list of attribute names to --keep-genes : in transcript-only mode (default), also preserve gene records --keep-comments: for GFF3 input/output, try to preserve comments -O process other non-transcript GFF records (by default non-transcript records are ignored) -V discard any mRNAs with CDS having in-frame stop codons (requires -g) -H for -V option, check and adjust the starting CDS phase if the original phase leads to a translation with an in-frame stop codon -B for -V option, single-exon transcripts are also checked on the opposite strand (requires -g) -P add transcript level GFF attributes about the coding status of each transcript, including partialness or in-frame stop codons (requires -g) --add-hasCDS : add a "hasCDS" attribute with value "true" for transcripts that have CDS features --adj-stop stop codon adjustment: enables -P and performs automatic adjustment of the CDS stop coordinate if premature or downstream -N discard multi-exon mRNAs that have any intron with a non-canonical splice site consensus (i.e. not GT-AG, GC-AG or AT-AC) -J discard any mRNAs that either lack initial START codon or the terminal STOP codon, or have an in-frame stop codon (i.e. only print mRNAs with a complete CDS) --no-pseudo: filter out records matching the 'pseudo' keyword --in-bed: input should be parsed as BED format (automatic if the input filename ends with .bed*) --in-tlf: input GFF-like one-line-per-transcript format without exon/CDS features (see --tlf option below); automatic if the input filename ends with .tlf) --stream: fast processing of input GFF/BED transcripts as they are received ((no sorting, exons must be grouped by transcript in the input data) Clustering: -M/--merge : cluster the input transcripts into loci, discarding "redundant" transcripts (those with the same exact introns and fully contained or equal boundaries) -d <dupinfo> : for -M option, write duplication info to file <dupinfo> --cluster-only: same as -M/--merge but without discarding any of the "duplicate" transcripts, only create "locus" features -K for -M option: also discard as redundant the shorter, fully contained transcripts (intron chains matching a part of the container) -Q for -M option, no longer require boundary containment when assessing redundancy (can be combined with -K); only introns have to match for multi-exon transcripts, and >=80% overlap for single-exon transcripts -Y for -M option, enforce -Q but also discard overlapping single-exon transcripts, even on the opposite strand (can be combined with -K) Output options: --force-exons: make sure that the lowest level GFF features are considered "exon" features --gene2exon: for single-line genes not parenting any transcripts, add an exon feature spanning the entire gene (treat it as a transcript) --t-adopt: try to find a parent gene overlapping/containing a transcript that does not have any explicit gene Parent -D decode url encoded characters within attributes -Z merge very close exons into a single exon (when intron size<4) -g full path to a multi-fasta file with the genomic sequences for all input mappings, OR a directory with single-fasta files (one per genomic sequence, with file names matching sequence names) -j output the junctions and the corresponding transcripts -w write a fasta file with spliced exons for each transcript --w-add <N> for the -w option, extract additional <N> bases both upstream and downstream of the transcript boundaries --w-nocds for -w, disable the output of CDS info in the FASTA file -x write a fasta file with spliced CDS for each GFF transcript -y write a protein fasta file with the translation of CDS for each record -W for -w, -x and -y options, write in the FASTA defline all the exon coordinates projected onto the spliced sequence; -S for -y option, use '*' instead of '.' as stop codon translation -L Ensembl GTF to GFF3 conversion, adds version to IDs -m <chr_replace> is a name mapping table for converting reference sequence names, having this 2-column format: <original_ref_ID> <new_ref_ID> -t use <trackname> in the 2nd column of each GFF/GTF output line -o write the output records into <outfile> instead of stdout -T main output will be GTF instead of GFF3 --bed output records in BED format instead of default GFF3 --tlf output "transcript line format" which is like GFF but with exons and CDS related features stored as GFF attributes in the transcript feature line, like this: exoncount=N;exons=<exons>;CDSphase=<N>;CDS=<CDScoords> <exons> is a comma-delimited list of exon_start-exon_end coordinates; <CDScoords> is CDS_start:CDS_end coordinates or a list like <exons> --table output a simple tab delimited format instead of GFF, with columns having the values of GFF attributes given in <attrlist>; special pseudo-attributes (prefixed by @) are recognized: @id, @geneid, @chr, @start, @end, @strand, @numexons, @exons, @cds, @covlen, @cdslen If any of -w/-y/-x FASTA output files are enabled, the same fields (excluding @id) are appended to the definition line of corresponding FASTA records -v,-E expose (warn about) duplicate transcript IDs and other potential problems with the given GFF/GTF records ]]> </help> <citations> <citation type="doi">10.1038/nbt.1621</citation> </citations> </tool>