Mercurial > repos > devteam > kernel_principal_component_analysis
comparison kpca.py @ 0:e9ebd4bfbdfc draft
Imported from capsule None
| author | devteam |
|---|---|
| date | Mon, 19 May 2014 12:34:31 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:e9ebd4bfbdfc |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 """ | |
| 4 Run kernel PCA using kpca() from R 'kernlab' package | |
| 5 | |
| 6 usage: %prog [options] | |
| 7 -i, --input=i: Input file | |
| 8 -o, --output1=o: Summary output | |
| 9 -p, --output2=p: Figures output | |
| 10 -c, --var_cols=c: Variable columns | |
| 11 -k, --kernel=k: Kernel function | |
| 12 -f, --features=f: Number of principal components to return | |
| 13 -s, --sigma=s: sigma | |
| 14 -d, --degree=d: degree | |
| 15 -l, --scale=l: scale | |
| 16 -t, --offset=t: offset | |
| 17 -r, --order=r: order | |
| 18 | |
| 19 usage: %prog input output1 output2 var_cols kernel features sigma(or_None) degree(or_None) scale(or_None) offset(or_None) order(or_None) | |
| 20 """ | |
| 21 | |
| 22 import sys, string | |
| 23 from rpy import * | |
| 24 import numpy | |
| 25 from bx.cookbook import doc_optparse | |
| 26 | |
| 27 | |
| 28 def stop_err(msg): | |
| 29 sys.stderr.write(msg) | |
| 30 sys.exit() | |
| 31 | |
| 32 #Parse Command Line | |
| 33 options, args = doc_optparse.parse( __doc__ ) | |
| 34 #{'options= kernel': 'rbfdot', 'var_cols': '1,2,3,4', 'degree': 'None', 'output2': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_260.dat', 'output1': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_259.dat', 'scale': 'None', 'offset': 'None', 'input': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_256.dat', 'sigma': '1.0', 'order': 'None'} | |
| 35 | |
| 36 infile = options.input | |
| 37 x_cols = options.var_cols.split(',') | |
| 38 kernel = options.kernel | |
| 39 outfile = options.output1 | |
| 40 outfile2 = options.output2 | |
| 41 ncomps = int(options.features) | |
| 42 fout = open(outfile,'w') | |
| 43 | |
| 44 elems = [] | |
| 45 for i, line in enumerate( file ( infile )): | |
| 46 line = line.rstrip('\r\n') | |
| 47 if len( line )>0 and not line.startswith( '#' ): | |
| 48 elems = line.split( '\t' ) | |
| 49 break | |
| 50 if i == 30: | |
| 51 break # Hopefully we'll never get here... | |
| 52 | |
| 53 if len( elems )<1: | |
| 54 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
| 55 | |
| 56 x_vals = [] | |
| 57 | |
| 58 for k,col in enumerate(x_cols): | |
| 59 x_cols[k] = int(col)-1 | |
| 60 x_vals.append([]) | |
| 61 | |
| 62 NA = 'NA' | |
| 63 skipped = 0 | |
| 64 for ind,line in enumerate( file( infile )): | |
| 65 if line and not line.startswith( '#' ): | |
| 66 try: | |
| 67 fields = line.strip().split("\t") | |
| 68 for k,col in enumerate(x_cols): | |
| 69 try: | |
| 70 xval = float(fields[col]) | |
| 71 except: | |
| 72 #xval = r('NA') | |
| 73 xval = NaN# | |
| 74 x_vals[k].append(xval) | |
| 75 except: | |
| 76 skipped += 1 | |
| 77 | |
| 78 x_vals1 = numpy.asarray(x_vals).transpose() | |
| 79 dat= r.list(array(x_vals1)) | |
| 80 | |
| 81 print r('library("kernlab")') | |
| 82 | |
| 83 try: | |
| 84 r.suppressWarnings(r.library('kernlab')) | |
| 85 except: | |
| 86 stop_err('Missing R library kernlab') | |
| 87 | |
| 88 set_default_mode(NO_CONVERSION) | |
| 89 if kernel=="rbfdot" or kernel=="anovadot": | |
| 90 pars = r.list(sigma=float(options.sigma)) | |
| 91 elif kernel=="polydot": | |
| 92 pars = r.list(degree=float(options.degree),scale=float(options.scale),offset=float(options.offset)) | |
| 93 elif kernel=="tanhdot": | |
| 94 pars = r.list(scale=float(options.scale),offset=float(options.offset)) | |
| 95 elif kernel=="besseldot": | |
| 96 pars = r.list(degree=float(options.degree),sigma=float(options.sigma),order=float(options.order)) | |
| 97 elif kernel=="anovadot": | |
| 98 pars = r.list(degree=float(options.degree),sigma=float(options.sigma)) | |
| 99 else: | |
| 100 pars = r.list() | |
| 101 | |
| 102 try: | |
| 103 kpc = r.kpca(x=r.na_exclude(dat), kernel=kernel, kpar=pars, features=ncomps) | |
| 104 except RException, rex: | |
| 105 stop_err("Encountered error while performing kPCA on the input data: %s" %(rex)) | |
| 106 set_default_mode(BASIC_CONVERSION) | |
| 107 | |
| 108 eig = r.eig(kpc) | |
| 109 pcv = r.pcv(kpc) | |
| 110 rotated = r.rotated(kpc) | |
| 111 | |
| 112 comps = eig.keys() | |
| 113 eigv = eig.values() | |
| 114 for i in range(ncomps): | |
| 115 eigv[comps.index('Comp.%s' %(i+1))] = eig.values()[i] | |
| 116 | |
| 117 print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 118 | |
| 119 print >>fout, "#Eigenvalue\t%s" %("\t".join(["%.4g" % el for el in eig.values()])) | |
| 120 | |
| 121 print >>fout, "#Principal component vectors\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 122 for obs,val in enumerate(pcv): | |
| 123 print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) | |
| 124 | |
| 125 print >>fout, "#Rotated values\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 126 for obs,val in enumerate(rotated): | |
| 127 print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) | |
| 128 | |
| 129 r.pdf( outfile2, 8, 8 ) | |
| 130 if ncomps != 1: | |
| 131 r.pairs(rotated,labels=r.list(range(1,ncomps+1)),main="Scatterplot of rotated values") | |
| 132 else: | |
| 133 r.plot(rotated, ylab='Comp.1', main="Scatterplot of rotated values") | |
| 134 r.dev_off() |
