Mercurial > repos > devteam > partialr_square
comparison partialR_square.py @ 0:88ef41de020d draft default tip
Imported from capsule None
| author | devteam |
|---|---|
| date | Tue, 01 Apr 2014 10:52:23 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:88ef41de020d |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 import sys | |
| 4 from rpy import * | |
| 5 import numpy | |
| 6 | |
| 7 #export PYTHONPATH=~/galaxy/lib/ | |
| 8 #running command python partialR_square.py reg_inp.tab 4 1,2,3 partialR_result.tabular | |
| 9 | |
| 10 def stop_err(msg): | |
| 11 sys.stderr.write(msg) | |
| 12 sys.exit() | |
| 13 | |
| 14 | |
| 15 def sscombs(s): | |
| 16 if len(s) == 1: | |
| 17 return [s] | |
| 18 else: | |
| 19 ssc = sscombs(s[1:]) | |
| 20 return [s[0]] + [s[0]+comb for comb in ssc] + ssc | |
| 21 | |
| 22 | |
| 23 infile = sys.argv[1] | |
| 24 y_col = int(sys.argv[2])-1 | |
| 25 x_cols = sys.argv[3].split(',') | |
| 26 outfile = sys.argv[4] | |
| 27 | |
| 28 print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) | |
| 29 fout = open(outfile,'w') | |
| 30 | |
| 31 for i, line in enumerate( file ( infile )): | |
| 32 line = line.rstrip('\r\n') | |
| 33 if len( line )>0 and not line.startswith( '#' ): | |
| 34 elems = line.split( '\t' ) | |
| 35 break | |
| 36 if i == 30: | |
| 37 break # Hopefully we'll never get here... | |
| 38 | |
| 39 if len( elems )<1: | |
| 40 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
| 41 | |
| 42 y_vals = [] | |
| 43 x_vals = [] | |
| 44 | |
| 45 for k, col in enumerate(x_cols): | |
| 46 x_cols[k] = int(col)-1 | |
| 47 x_vals.append([]) | |
| 48 """ | |
| 49 try: | |
| 50 float( elems[x_cols[k]] ) | |
| 51 except: | |
| 52 try: | |
| 53 msg = "This operation cannot be performed on non-numeric column %d containing value '%s'." % ( col, elems[x_cols[k]] ) | |
| 54 except: | |
| 55 msg = "This operation cannot be performed on non-numeric data." | |
| 56 stop_err( msg ) | |
| 57 """ | |
| 58 NA = 'NA' | |
| 59 for ind, line in enumerate( file( infile )): | |
| 60 if line and not line.startswith( '#' ): | |
| 61 try: | |
| 62 fields = line.split("\t") | |
| 63 try: | |
| 64 yval = float(fields[y_col]) | |
| 65 except Exception, ey: | |
| 66 yval = r('NA') | |
| 67 #print >> sys.stderr, "ey = %s" %ey | |
| 68 y_vals.append(yval) | |
| 69 for k, col in enumerate(x_cols): | |
| 70 try: | |
| 71 xval = float(fields[col]) | |
| 72 except Exception, ex: | |
| 73 xval = r('NA') | |
| 74 #print >> sys.stderr, "ex = %s" %ex | |
| 75 x_vals[k].append(xval) | |
| 76 except: | |
| 77 pass | |
| 78 | |
| 79 x_vals1 = numpy.asarray(x_vals).transpose() | |
| 80 dat = r.list(x=array(x_vals1), y=y_vals) | |
| 81 | |
| 82 set_default_mode(NO_CONVERSION) | |
| 83 try: | |
| 84 full = r.lm(r("y ~ x"), data= r.na_exclude(dat)) #full model includes all the predictor variables specified by the user | |
| 85 except RException, rex: | |
| 86 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") | |
| 87 set_default_mode(BASIC_CONVERSION) | |
| 88 | |
| 89 summary = r.summary(full) | |
| 90 fullr2 = summary.get('r.squared','NA') | |
| 91 | |
| 92 if fullr2 == 'NA': | |
| 93 stop_err("Error in linear regression") | |
| 94 | |
| 95 if len(x_vals) < 10: | |
| 96 s = "" | |
| 97 for ch in range(len(x_vals)): | |
| 98 s += str(ch) | |
| 99 else: | |
| 100 stop_err("This tool only works with less than 10 predictors.") | |
| 101 | |
| 102 print >> fout, "#Model\tR-sq\tpartial_R_Terms\tpartial_R_Value" | |
| 103 all_combos = sorted(sscombs(s), key=len) | |
| 104 all_combos.reverse() | |
| 105 for j, cols in enumerate(all_combos): | |
| 106 #if len(cols) == len(s): #Same as the full model above | |
| 107 # continue | |
| 108 if len(cols) == 1: | |
| 109 x_vals1 = x_vals[int(cols)] | |
| 110 else: | |
| 111 x_v = [] | |
| 112 for col in cols: | |
| 113 x_v.append(x_vals[int(col)]) | |
| 114 x_vals1 = numpy.asarray(x_v).transpose() | |
| 115 dat = r.list(x=array(x_vals1), y=y_vals) | |
| 116 set_default_mode(NO_CONVERSION) | |
| 117 red = r.lm(r("y ~ x"), data= dat) #Reduced model | |
| 118 set_default_mode(BASIC_CONVERSION) | |
| 119 summary = r.summary(red) | |
| 120 redr2 = summary.get('r.squared','NA') | |
| 121 try: | |
| 122 partial_R = (float(fullr2)-float(redr2))/(1-float(redr2)) | |
| 123 except: | |
| 124 partial_R = 'NA' | |
| 125 col_str = "" | |
| 126 for col in cols: | |
| 127 col_str = col_str + str(int(x_cols[int(col)]) + 1) + " " | |
| 128 col_str.strip() | |
| 129 partial_R_col_str = "" | |
| 130 for col in s: | |
| 131 if col not in cols: | |
| 132 partial_R_col_str = partial_R_col_str + str(int(x_cols[int(col)]) + 1) + " " | |
| 133 partial_R_col_str.strip() | |
| 134 if len(cols) == len(s): #full model | |
| 135 partial_R_col_str = "-" | |
| 136 partial_R = "-" | |
| 137 try: | |
| 138 redr2 = "%.4f" % (float(redr2)) | |
| 139 except: | |
| 140 pass | |
| 141 try: | |
| 142 partial_R = "%.4f" % (float(partial_R)) | |
| 143 except: | |
| 144 pass | |
| 145 print >> fout, "%s\t%s\t%s\t%s" % ( col_str, redr2, partial_R_col_str, partial_R ) |
