Mercurial > repos > devteam > rcve
comparison rcve.py @ 0:7740956d197b draft default tip
Imported from capsule None
| author | devteam |
|---|---|
| date | Tue, 01 Apr 2014 10:52:35 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:7740956d197b |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 import sys | |
| 4 from rpy import * | |
| 5 import numpy | |
| 6 | |
| 7 def stop_err(msg): | |
| 8 sys.stderr.write(msg) | |
| 9 sys.exit() | |
| 10 | |
| 11 | |
| 12 def sscombs(s): | |
| 13 if len(s) == 1: | |
| 14 return [s] | |
| 15 else: | |
| 16 ssc = sscombs(s[1:]) | |
| 17 return [s[0]] + [s[0]+comb for comb in ssc] + ssc | |
| 18 | |
| 19 | |
| 20 infile = sys.argv[1] | |
| 21 y_col = int(sys.argv[2])-1 | |
| 22 x_cols = sys.argv[3].split(',') | |
| 23 outfile = sys.argv[4] | |
| 24 | |
| 25 print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) | |
| 26 fout = open(outfile,'w') | |
| 27 | |
| 28 for i, line in enumerate( file ( infile )): | |
| 29 line = line.rstrip('\r\n') | |
| 30 if len( line )>0 and not line.startswith( '#' ): | |
| 31 elems = line.split( '\t' ) | |
| 32 break | |
| 33 if i == 30: | |
| 34 break # Hopefully we'll never get here... | |
| 35 | |
| 36 if len( elems )<1: | |
| 37 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
| 38 | |
| 39 y_vals = [] | |
| 40 x_vals = [] | |
| 41 | |
| 42 for k, col in enumerate(x_cols): | |
| 43 x_cols[k] = int(col)-1 | |
| 44 x_vals.append([]) | |
| 45 """ | |
| 46 try: | |
| 47 float( elems[x_cols[k]] ) | |
| 48 except: | |
| 49 try: | |
| 50 msg = "This operation cannot be performed on non-numeric column %d containing value '%s'." % ( col, elems[x_cols[k]] ) | |
| 51 except: | |
| 52 msg = "This operation cannot be performed on non-numeric data." | |
| 53 stop_err( msg ) | |
| 54 """ | |
| 55 NA = 'NA' | |
| 56 for ind, line in enumerate( file( infile )): | |
| 57 if line and not line.startswith( '#' ): | |
| 58 try: | |
| 59 fields = line.split("\t") | |
| 60 try: | |
| 61 yval = float(fields[y_col]) | |
| 62 except Exception, ey: | |
| 63 yval = r('NA') | |
| 64 #print >>sys.stderr, "ey = %s" %ey | |
| 65 y_vals.append(yval) | |
| 66 for k, col in enumerate(x_cols): | |
| 67 try: | |
| 68 xval = float(fields[col]) | |
| 69 except Exception, ex: | |
| 70 xval = r('NA') | |
| 71 #print >>sys.stderr, "ex = %s" %ex | |
| 72 x_vals[k].append(xval) | |
| 73 except: | |
| 74 pass | |
| 75 | |
| 76 x_vals1 = numpy.asarray(x_vals).transpose() | |
| 77 dat = r.list( x=array(x_vals1), y=y_vals ) | |
| 78 | |
| 79 set_default_mode(NO_CONVERSION) | |
| 80 try: | |
| 81 full = r.lm( r("y ~ x"), data=r.na_exclude(dat) ) #full model includes all the predictor variables specified by the user | |
| 82 except RException, rex: | |
| 83 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") | |
| 84 set_default_mode(BASIC_CONVERSION) | |
| 85 | |
| 86 summary = r.summary(full) | |
| 87 fullr2 = summary.get('r.squared','NA') | |
| 88 | |
| 89 if fullr2 == 'NA': | |
| 90 stop_err("Error in linear regression") | |
| 91 | |
| 92 if len(x_vals) < 10: | |
| 93 s = "" | |
| 94 for ch in range(len(x_vals)): | |
| 95 s += str(ch) | |
| 96 else: | |
| 97 stop_err("This tool only works with less than 10 predictors.") | |
| 98 | |
| 99 print >> fout, "#Model\tR-sq\tRCVE_Terms\tRCVE_Value" | |
| 100 all_combos = sorted(sscombs(s), key=len) | |
| 101 all_combos.reverse() | |
| 102 for j, cols in enumerate(all_combos): | |
| 103 #if len(cols) == len(s): #Same as the full model above | |
| 104 # continue | |
| 105 if len(cols) == 1: | |
| 106 x_vals1 = x_vals[int(cols)] | |
| 107 else: | |
| 108 x_v = [] | |
| 109 for col in cols: | |
| 110 x_v.append(x_vals[int(col)]) | |
| 111 x_vals1 = numpy.asarray(x_v).transpose() | |
| 112 dat = r.list(x=array(x_vals1), y=y_vals) | |
| 113 set_default_mode(NO_CONVERSION) | |
| 114 red = r.lm(r("y ~ x"), data= dat) #Reduced model | |
| 115 set_default_mode(BASIC_CONVERSION) | |
| 116 summary = r.summary(red) | |
| 117 redr2 = summary.get('r.squared','NA') | |
| 118 try: | |
| 119 rcve = (float(fullr2)-float(redr2))/float(fullr2) | |
| 120 except: | |
| 121 rcve = 'NA' | |
| 122 col_str = "" | |
| 123 for col in cols: | |
| 124 col_str = col_str + str(int(x_cols[int(col)]) + 1) + " " | |
| 125 col_str.strip() | |
| 126 rcve_col_str = "" | |
| 127 for col in s: | |
| 128 if col not in cols: | |
| 129 rcve_col_str = rcve_col_str + str(int(x_cols[int(col)]) + 1) + " " | |
| 130 rcve_col_str.strip() | |
| 131 if len(cols) == len(s): #full model | |
| 132 rcve_col_str = "-" | |
| 133 rcve = "-" | |
| 134 try: | |
| 135 redr2 = "%.4f" % (float(redr2)) | |
| 136 except: | |
| 137 pass | |
| 138 try: | |
| 139 rcve = "%.4f" % (float(rcve)) | |
| 140 except: | |
| 141 pass | |
| 142 print >> fout, "%s\t%s\t%s\t%s" % ( col_str, redr2, rcve_col_str, rcve ) |
