Mercurial > repos > drosofff > lumpy
view pairend_distro.py @ 0:8b3daa745d9b draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/lumpy commit c0bfc4b2215705e1b5fd1d4e60b1d72e5da13c92
author | drosofff |
---|---|
date | Tue, 06 Dec 2016 05:46:28 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python # (c) 2012 - Ryan M. Layer # Hall Laboratory # Quinlan Laboratory # Department of Computer Science # Department of Biochemistry and Molecular Genetics # Department of Public Health Sciences and Center for Public Health Genomics, # University of Virginia # rl6sf@virginia.edu import sys import numpy as np from operator import itemgetter from optparse import OptionParser # some constants for sam/bam field ids SAM_FLAG = 1 SAM_REFNAME = 2 SAM_MATE_REFNAME = 6 SAM_ISIZE = 8 parser = OptionParser() parser.add_option("-r", "--read_length", type="int", dest="read_length", help="Read length") parser.add_option("-X", dest="X", type="int", help="Number of stdevs from mean to extend") parser.add_option("-N", dest="N", type="int", help="Number to sample") parser.add_option("-o", dest="output_file", help="Output file") parser.add_option("-m", dest="mads", type="int", default=10, help="Outlier cutoff in # of median absolute deviations (unscaled, upper only)") def unscaled_upper_mad(xs): """Return a tuple consisting of the median of xs followed by the unscaled median absolute deviation of the values in xs that lie above the median. """ med = np.median(xs) return med, np.median(xs[xs > med] - med) (options, args) = parser.parse_args() if not options.read_length: parser.error('Read length not given') if not options.X: parser.error('X not given') if not options.N: parser.error('N not given') if not options.output_file: parser.error('Output file not given') required = 97 restricted = 3484 flag_mask = required | restricted L = [] c = 0 for l in sys.stdin: if c >= options.N: break A = l.rstrip().split('\t') flag = int(A[SAM_FLAG]) refname = A[SAM_REFNAME] mate_refname = A[SAM_MATE_REFNAME] isize = int(A[SAM_ISIZE]) want = mate_refname == "=" and flag & flag_mask == required and isize >= 0 if want: c += 1 L.append(isize) # warn if very few elements in distribution min_elements = 1000 if len(L) < min_elements: sys.stderr.write("Warning: only %s elements in distribution (min: %s)\n" % (len(L), min_elements)) mean = "NA" stdev = "NA" else: # Remove outliers L = np.array(L) L.sort() med, umad = unscaled_upper_mad(L) upper_cutoff = med + options.mads * umad L = L[L < upper_cutoff] new_len = len(L) removed = c - new_len sys.stderr.write("Removed %d outliers with isize >= %d\n" % (removed, upper_cutoff)) c = new_len mean = np.mean(L) stdev = np.std(L) start = options.read_length end = int(mean + options.X*stdev) H = [0] * (end - start + 1) s = 0 for x in L: if (x >= start) and (x <= end): j = int(x - start) H[j] = H[ int(x - start) ] + 1 s += 1 f = open(options.output_file, 'w') for i in range(end - start): o = str(i) + "\t" + str(float(H[i])/float(s)) + "\n" f.write(o) f.close() print('mean:' + str(mean) + '\tstdev:' + str(stdev))