Mercurial > repos > drosofff > msp_sr_signature
comparison smRtools.py @ 0:a2f293717ce3 draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/msp_sr_signature commit fe40dec87779c1fcfbd03330e653aa886f4a2cda
author | drosofff |
---|---|
date | Wed, 21 Oct 2015 11:35:25 -0400 |
parents | |
children | 6218b518cd16 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:a2f293717ce3 |
---|---|
1 #!/usr/bin/python | |
2 # version 1 7-5-2012 unification of the SmRNAwindow class | |
3 | |
4 import sys, subprocess | |
5 from collections import defaultdict | |
6 from numpy import mean, median, std | |
7 ##Disable scipy import temporarily, as no working scipy on toolshed. | |
8 ##from scipy import stats | |
9 | |
10 def get_fasta (index="/home/galaxy/galaxy-dist/bowtie/5.37_Dmel/5.37_Dmel"): | |
11 '''This function will return a dictionary containing fasta identifiers as keys and the | |
12 sequence as values. Index must be the path to a fasta file.''' | |
13 p = subprocess.Popen(args=["bowtie-inspect","-a", "0", index], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # bowtie-inspect outputs sequences on single lines | |
14 outputlines = p.stdout.readlines() | |
15 p.wait() | |
16 item_dic = {} | |
17 for line in outputlines: | |
18 if (line[0] == ">"): | |
19 try: | |
20 item_dic[current_item] = "".join(stringlist) # to dump the sequence of the previous item - try because of the keyerror of the first item | |
21 except: pass | |
22 current_item = line[1:].rstrip().split()[0] #take the first word before space because bowtie splits headers ! | |
23 item_dic[current_item] = "" | |
24 stringlist=[] | |
25 else: | |
26 stringlist.append(line.rstrip() ) | |
27 item_dic[current_item] = "".join(stringlist) # for the last item | |
28 return item_dic | |
29 | |
30 def get_fasta_headers (index): | |
31 p = subprocess.Popen(args=["bowtie-inspect","-n", index], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # bowtie-inspect outputs sequences on single lines | |
32 outputlines = p.stdout.readlines() | |
33 p.wait() | |
34 item_dic = {} | |
35 for line in outputlines: | |
36 header = line.rstrip().split()[0] #take the first word before space because bowtie splits headers ! | |
37 item_dic[header] = 1 | |
38 return item_dic | |
39 | |
40 | |
41 def get_file_sample (file, numberoflines): | |
42 '''import random to use this function''' | |
43 F=open(file) | |
44 fullfile = F.read().splitlines() | |
45 F.close() | |
46 if len(fullfile) < numberoflines: | |
47 return "sample size exceeds file size" | |
48 return random.sample(fullfile, numberoflines) | |
49 | |
50 def get_fasta_from_history (file): | |
51 F = open (file, "r") | |
52 item_dic = {} | |
53 for line in F: | |
54 if (line[0] == ">"): | |
55 try: | |
56 item_dic[current_item] = "".join(stringlist) # to dump the sequence of the previous item - try because of the keyerror of the first item | |
57 except: pass | |
58 current_item = line[1:-1].split()[0] #take the first word before space because bowtie splits headers ! | |
59 item_dic[current_item] = "" | |
60 stringlist=[] | |
61 else: | |
62 stringlist.append(line[:-1]) | |
63 item_dic[current_item] = "".join(stringlist) # for the last item | |
64 return item_dic | |
65 | |
66 def antipara (sequence): | |
67 antidict = {"A":"T", "T":"A", "G":"C", "C":"G", "N":"N"} | |
68 revseq = sequence[::-1] | |
69 return "".join([antidict[i] for i in revseq]) | |
70 | |
71 def RNAtranslate (sequence): | |
72 return "".join([i if i in "AGCN" else "U" for i in sequence]) | |
73 def DNAtranslate (sequence): | |
74 return "".join([i if i in "AGCN" else "T" for i in sequence]) | |
75 | |
76 def RNAfold (sequence_list): | |
77 thestring= "\n".join(sequence_list) | |
78 p = subprocess.Popen(args=["RNAfold","--noPS"], stdin= subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) | |
79 output=p.communicate(thestring)[0] | |
80 p.wait() | |
81 output=output.split("\n") | |
82 if not output[-1]: output = output[:-1] # nasty patch to remove last empty line | |
83 buffer=[] | |
84 for line in output: | |
85 if line[0] in ["N","A","T","U","G","C"]: | |
86 buffer.append(DNAtranslate(line)) | |
87 if line[0] in ["(",".",")"]: | |
88 fields=line.split("(") | |
89 energy= fields[-1] | |
90 energy = energy[:-1] # remove the ) parenthesis | |
91 energy=float(energy) | |
92 buffer.append(str(energy)) | |
93 return dict(zip(buffer[::2], buffer[1::2])) | |
94 | |
95 def extractsubinstance (start, end, instance): | |
96 ''' Testing whether this can be an function external to the class to save memory''' | |
97 subinstance = SmRNAwindow (instance.gene, instance.sequence[start-1:end], start) | |
98 subinstance.gene = "%s %s %s" % (subinstance.gene, subinstance.windowoffset, subinstance.windowoffset + subinstance.size - 1) | |
99 upcoordinate = [i for i in range(start,end+1) if instance.readDict.has_key(i) ] | |
100 downcoordinate = [-i for i in range(start,end+1) if instance.readDict.has_key(-i) ] | |
101 for i in upcoordinate: | |
102 subinstance.readDict[i]=instance.readDict[i] | |
103 for i in downcoordinate: | |
104 subinstance.readDict[i]=instance.readDict[i] | |
105 return subinstance | |
106 | |
107 class HandleSmRNAwindows: | |
108 def __init__(self, alignmentFile="~", alignmentFileFormat="tabular", genomeRefFile="~", genomeRefFormat="bowtieIndex", biosample="undetermined", size_inf=None, size_sup=1000, norm=1.0): | |
109 self.biosample = biosample | |
110 self.alignmentFile = alignmentFile | |
111 self.alignmentFileFormat = alignmentFileFormat # can be "tabular" or "sam" | |
112 self.genomeRefFile = genomeRefFile | |
113 self.genomeRefFormat = genomeRefFormat # can be "bowtieIndex" or "fastaSource" | |
114 self.alignedReads = 0 | |
115 self.instanceDict = {} | |
116 self.size_inf=size_inf | |
117 self.size_sup=size_sup | |
118 self.norm=norm | |
119 if genomeRefFormat == "bowtieIndex": | |
120 self.itemDict = get_fasta (genomeRefFile) | |
121 elif genomeRefFormat == "fastaSource": | |
122 self.itemDict = get_fasta_from_history (genomeRefFile) | |
123 for item in self.itemDict: | |
124 self.instanceDict[item] = SmRNAwindow(item, sequence=self.itemDict[item], windowoffset=1, biosample=self.biosample, norm=self.norm) # create as many instances as there is items | |
125 self.readfile() | |
126 | |
127 def readfile (self) : | |
128 if self.alignmentFileFormat == "tabular": | |
129 F = open (self.alignmentFile, "r") | |
130 for line in F: | |
131 fields = line.split() | |
132 polarity = fields[1] | |
133 gene = fields[2] | |
134 offset = int(fields[3]) | |
135 size = len (fields[4]) | |
136 if self.size_inf: | |
137 if (size>=self.size_inf and size<= self.size_sup): | |
138 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow | |
139 self.alignedReads += 1 | |
140 else: | |
141 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow | |
142 self.alignedReads += 1 | |
143 F.close() | |
144 return self.instanceDict | |
145 # elif self.alignmentFileFormat == "sam": | |
146 # F = open (self.alignmentFile, "r") | |
147 # dict = {"0":"+", "16":"-"} | |
148 # for line in F: | |
149 # if line[0]=='@': | |
150 # continue | |
151 # fields = line.split() | |
152 # if fields[2] == "*": continue | |
153 # polarity = dict[fields[1]] | |
154 # gene = fields[2] | |
155 # offset = int(fields[3]) | |
156 # size = len (fields[9]) | |
157 # if self.size_inf: | |
158 # if (size>=self.size_inf and size<= self.size_sup): | |
159 # self.instanceDict[gene].addread (polarity, offset, size) | |
160 # self.alignedReads += 1 | |
161 # else: | |
162 # self.instanceDict[gene].addread (polarity, offset, size) | |
163 # self.alignedReads += 1 | |
164 # F.close() | |
165 elif self.alignmentFileFormat == "bam" or self.alignmentFileFormat == "sam": | |
166 import pysam | |
167 samfile = pysam.Samfile(self.alignmentFile) | |
168 for read in samfile: | |
169 if read.tid == -1: | |
170 continue # filter out unaligned reads | |
171 if read.is_reverse: | |
172 polarity="-" | |
173 else: | |
174 polarity="+" | |
175 gene = samfile.getrname(read.tid) | |
176 offset = read.pos | |
177 size = read.qlen | |
178 if self.size_inf: | |
179 if (size>=self.size_inf and size<= self.size_sup): | |
180 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow | |
181 self.alignedReads += 1 | |
182 else: | |
183 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow | |
184 self.alignedReads += 1 | |
185 return self.instanceDict | |
186 | |
187 # def size_histogram (self): | |
188 # size_dict={} | |
189 # size_dict['F']= defaultdict (int) | |
190 # size_dict['R']= defaultdict (int) | |
191 # size_dict['both'] = defaultdict (int) | |
192 # for item in self.instanceDict: | |
193 # buffer_dict_F = self.instanceDict[item].size_histogram()['F'] | |
194 # buffer_dict_R = self.instanceDict[item].size_histogram()['R'] | |
195 # for size in buffer_dict_F: | |
196 # size_dict['F'][size] += buffer_dict_F[size] | |
197 # for size in buffer_dict_R: | |
198 # size_dict['R'][size] -= buffer_dict_R[size] | |
199 # allSizeKeys = list (set (size_dict['F'].keys() + size_dict['R'].keys() ) ) | |
200 # for size in allSizeKeys: | |
201 # size_dict['both'][size] = size_dict['F'][size] + size_dict['R'][size] | |
202 # return size_dict | |
203 def size_histogram (self): # in HandleSmRNAwindows | |
204 '''refactored on 7-9-2014 to debug size_histogram tool''' | |
205 size_dict={} | |
206 size_dict['F']= defaultdict (float) | |
207 size_dict['R']= defaultdict (float) | |
208 size_dict['both'] = defaultdict (float) | |
209 for item in self.instanceDict: | |
210 buffer_dict = self.instanceDict[item].size_histogram() | |
211 for polarity in ["F", "R"]: | |
212 for size in buffer_dict[polarity]: | |
213 size_dict[polarity][size] += buffer_dict[polarity][size] | |
214 for size in buffer_dict["both"]: | |
215 size_dict["both"][size] += buffer_dict["F"][size] - buffer_dict["R"][size] | |
216 return size_dict | |
217 | |
218 def CountFeatures (self, GFF3="path/to/file"): | |
219 featureDict = defaultdict(int) | |
220 F = open (GFF3, "r") | |
221 for line in F: | |
222 if line[0] == "#": continue | |
223 fields = line[:-1].split() | |
224 chrom, feature, leftcoord, rightcoord, polarity = fields[0], fields[2], fields[3], fields[4], fields[6] | |
225 featureDict[feature] += self.instanceDict[chrom].readcount(upstream_coord=int(leftcoord), downstream_coord=int(rightcoord), polarity="both", method="destructive") | |
226 F.close() | |
227 return featureDict | |
228 | |
229 class SmRNAwindow: | |
230 | |
231 def __init__(self, gene, sequence="ATGC", windowoffset=1, biosample="Undetermined", norm=1.0): | |
232 self.biosample = biosample | |
233 self.sequence = sequence | |
234 self.gene = gene | |
235 self.windowoffset = windowoffset | |
236 self.size = len(sequence) | |
237 self.readDict = defaultdict(list) # with a {+/-offset:[size1, size2, ...], ...} | |
238 self.matchedreadsUp = 0 | |
239 self.matchedreadsDown = 0 | |
240 self.norm=norm | |
241 | |
242 def addread (self, polarity, offset, size): | |
243 '''ATTENTION ATTENTION ATTENTION''' | |
244 ''' We removed the conversion from 0 to 1 based offset, as we do this now during readparsing.''' | |
245 if polarity == "+": | |
246 self.readDict[offset].append(size) | |
247 self.matchedreadsUp += 1 | |
248 else: | |
249 self.readDict[-(offset + size -1)].append(size) | |
250 self.matchedreadsDown += 1 | |
251 return | |
252 | |
253 def barycenter (self, upstream_coord=None, downstream_coord=None): | |
254 '''refactored 24-12-2013 to save memory and introduce offset filtering see readcount method for further discussion on that | |
255 In this version, attempt to replace the dictionary structure by a list of tupple to save memory too''' | |
256 upstream_coord = upstream_coord or self.windowoffset | |
257 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
258 window_size = downstream_coord - upstream_coord +1 | |
259 def weigthAverage (TuppleList): | |
260 weightSum = 0 | |
261 PonderWeightSum = 0 | |
262 for tuple in TuppleList: | |
263 PonderWeightSum += tuple[0] * tuple[1] | |
264 weightSum += tuple[1] | |
265 if weightSum > 0: | |
266 return PonderWeightSum / float(weightSum) | |
267 else: | |
268 return 0 | |
269 forwardTuppleList = [(k, len(self.readDict[k])) for k in self.readDict.keys() if (k > 0 and abs(k) >= upstream_coord and abs(k) <= downstream_coord)] # both forward and in the proper offset window | |
270 reverseTuppleList = [(-k, len(self.readDict[k])) for k in self.readDict.keys() if (k < 0 and abs(k) >= upstream_coord and abs(k) <= downstream_coord)] # both reverse and in the proper offset window | |
271 Fbarycenter = (weigthAverage (forwardTuppleList) - upstream_coord) / window_size | |
272 Rbarycenter = (weigthAverage (reverseTuppleList) - upstream_coord) / window_size | |
273 return Fbarycenter, Rbarycenter | |
274 | |
275 def correlation_mapper (self, reference, window_size): | |
276 '''to map correlation with a sliding window 26-2-2013''' | |
277 from scipy import stats | |
278 | |
279 if window_size > self.size: | |
280 return [] | |
281 F=open(reference, "r") | |
282 reference_forward = [] | |
283 reference_reverse = [] | |
284 for line in F: | |
285 fields=line.split() | |
286 reference_forward.append(int(float(fields[1]))) | |
287 reference_reverse.append(int(float(fields[2]))) | |
288 F.close() | |
289 local_object_forward=[] | |
290 local_object_reverse=[] | |
291 ## Dict to list for the local object | |
292 for i in range(1, self.size+1): | |
293 local_object_forward.append(len(self.readDict[i])) | |
294 local_object_reverse.append(len(self.readDict[-i])) | |
295 ## start compiling results by slides | |
296 results=[] | |
297 for coordinate in range(self.size - window_size): | |
298 local_forward=local_object_forward[coordinate:coordinate + window_size] | |
299 local_reverse=local_object_reverse[coordinate:coordinate + window_size] | |
300 if sum(local_forward) == 0 or sum(local_reverse) == 0: | |
301 continue | |
302 try: | |
303 reference_to_local_cor_forward = stats.spearmanr(local_forward, reference_forward) | |
304 reference_to_local_cor_reverse = stats.spearmanr(local_reverse, reference_reverse) | |
305 if (reference_to_local_cor_forward[0] > 0.2 or reference_to_local_cor_reverse[0]>0.2): | |
306 results.append([coordinate+1, reference_to_local_cor_forward[0], reference_to_local_cor_reverse[0]]) | |
307 except: | |
308 pass | |
309 return results | |
310 | |
311 def readcount (self, size_inf=0, size_sup=1000, upstream_coord=None, downstream_coord=None, polarity="both", method="conservative"): | |
312 '''refactored 24-12-2013 to save memory and introduce offset filtering | |
313 take a look at the defaut parameters that cannot be defined relatively to the instance are they are defined before instanciation | |
314 the trick is to pass None and then test | |
315 polarity parameter can take "both", "forward" or "reverse" as value''' | |
316 upstream_coord = upstream_coord or self.windowoffset | |
317 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
318 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "both": | |
319 return self.matchedreadsUp + self.matchedreadsDown | |
320 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "forward": | |
321 return self.matchedreadsUp | |
322 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "reverse": | |
323 return self.matchedreadsDown | |
324 n=0 | |
325 if polarity == "both": | |
326 for offset in xrange(upstream_coord, downstream_coord+1): | |
327 if self.readDict.has_key(offset): | |
328 for read in self.readDict[offset]: | |
329 if (read>=size_inf and read<= size_sup): | |
330 n += 1 | |
331 if method != "conservative": | |
332 del self.readDict[offset] ## Carefull ! precludes re-use on the self.readDict dictionary !!!!!! TEST | |
333 if self.readDict.has_key(-offset): | |
334 for read in self.readDict[-offset]: | |
335 if (read>=size_inf and read<= size_sup): | |
336 n += 1 | |
337 if method != "conservative": | |
338 del self.readDict[-offset] | |
339 return n | |
340 elif polarity == "forward": | |
341 for offset in xrange(upstream_coord, downstream_coord+1): | |
342 if self.readDict.has_key(offset): | |
343 for read in self.readDict[offset]: | |
344 if (read>=size_inf and read<= size_sup): | |
345 n += 1 | |
346 return n | |
347 elif polarity == "reverse": | |
348 for offset in xrange(upstream_coord, downstream_coord+1): | |
349 if self.readDict.has_key(-offset): | |
350 for read in self.readDict[-offset]: | |
351 if (read>=size_inf and read<= size_sup): | |
352 n += 1 | |
353 return n | |
354 | |
355 def readsizes (self): | |
356 '''return a dictionary of number of reads by size (the keys)''' | |
357 dicsize = {} | |
358 for offset in self.readDict: | |
359 for size in self.readDict[offset]: | |
360 dicsize[size] = dicsize.get(size, 0) + 1 | |
361 for offset in range (min(dicsize.keys()), max(dicsize.keys())+1): | |
362 dicsize[size] = dicsize.get(size, 0) # to fill offsets with null values | |
363 return dicsize | |
364 | |
365 # def size_histogram(self): | |
366 # norm=self.norm | |
367 # hist_dict={} | |
368 # hist_dict['F']={} | |
369 # hist_dict['R']={} | |
370 # for offset in self.readDict: | |
371 # for size in self.readDict[offset]: | |
372 # if offset < 0: | |
373 # hist_dict['R'][size] = hist_dict['R'].get(size, 0) - 1*norm | |
374 # else: | |
375 # hist_dict['F'][size] = hist_dict['F'].get(size, 0) + 1*norm | |
376 # ## patch to avoid missing graphs when parsed by R-lattice. 27-08-2014. Test and validate ! | |
377 # if not (hist_dict['F']) and (not hist_dict['R']): | |
378 # hist_dict['F'][21] = 0 | |
379 # hist_dict['R'][21] = 0 | |
380 # ## | |
381 # return hist_dict | |
382 | |
383 def size_histogram(self, minquery=None, maxquery=None): # in SmRNAwindow | |
384 '''refactored on 7-9-2014 to debug size_histogram tool''' | |
385 norm=self.norm | |
386 size_dict={} | |
387 size_dict['F']= defaultdict (float) | |
388 size_dict['R']= defaultdict (float) | |
389 size_dict['both']= defaultdict (float) | |
390 for offset in self.readDict: | |
391 for size in self.readDict[offset]: | |
392 if offset < 0: | |
393 size_dict['R'][size] = size_dict['R'][size] - 1*norm | |
394 else: | |
395 size_dict['F'][size] = size_dict['F'][size] + 1*norm | |
396 ## patch to avoid missing graphs when parsed by R-lattice. 27-08-2014. Test and validate ! | |
397 if not (size_dict['F']) and (not size_dict['R']): | |
398 size_dict['F'][21] = 0 | |
399 size_dict['R'][21] = 0 | |
400 ## | |
401 allSizeKeys = list (set (size_dict['F'].keys() + size_dict['R'].keys() ) ) | |
402 for size in allSizeKeys: | |
403 size_dict['both'][size] = size_dict['F'][size] - size_dict['R'][size] | |
404 if minquery: | |
405 for polarity in size_dict.keys(): | |
406 for size in xrange(minquery, maxquery+1): | |
407 if not size in size_dict[polarity].keys(): | |
408 size_dict[polarity][size]=0 | |
409 return size_dict | |
410 | |
411 def statsizes (self, upstream_coord=None, downstream_coord=None): | |
412 ''' migration to memory saving by specifying possible subcoordinates | |
413 see the readcount method for further discussion''' | |
414 upstream_coord = upstream_coord or self.windowoffset | |
415 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
416 L = [] | |
417 for offset in self.readDict: | |
418 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
419 for size in self.readDict[offset]: | |
420 L.append(size) | |
421 meansize = mean(L) | |
422 stdv = std(L) | |
423 mediansize = median(L) | |
424 return meansize, mediansize, stdv | |
425 | |
426 def foldEnergy (self, upstream_coord=None, downstream_coord=None): | |
427 ''' migration to memory saving by specifying possible subcoordinates | |
428 see the readcount method for further discussion''' | |
429 upstream_coord = upstream_coord or self.windowoffset | |
430 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
431 Energy = RNAfold ([self.sequence[upstream_coord-1:downstream_coord] ]) | |
432 return float(Energy[self.sequence[upstream_coord-1:downstream_coord]]) | |
433 | |
434 def Ufreq (self, size_scope, upstream_coord=None, downstream_coord=None): | |
435 ''' migration to memory saving by specifying possible subcoordinates | |
436 see the readcount method for further discussion. size_scope must be an interable''' | |
437 upstream_coord = upstream_coord or self.windowoffset | |
438 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
439 freqDic = {"A":0,"T":0,"G":0,"C":0, "N":0} | |
440 convertDic = {"A":"T","T":"A","G":"C","C":"G","N":"N"} | |
441 for offset in self.readDict: | |
442 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
443 for size in self.readDict[offset]: | |
444 if size in size_scope: | |
445 startbase = self.sequence[abs(offset)-self.windowoffset] | |
446 if offset < 0: | |
447 startbase = convertDic[startbase] | |
448 freqDic[startbase] += 1 | |
449 base_sum = float ( sum( freqDic.values()) ) | |
450 if base_sum == 0: | |
451 return "." | |
452 else: | |
453 return freqDic["T"] / base_sum * 100 | |
454 | |
455 def Ufreq_stranded (self, size_scope, upstream_coord=None, downstream_coord=None): | |
456 ''' migration to memory saving by specifying possible subcoordinates | |
457 see the readcount method for further discussion. size_scope must be an interable | |
458 This method is similar to the Ufreq method but take strandness into account''' | |
459 upstream_coord = upstream_coord or self.windowoffset | |
460 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
461 freqDic = {"Afor":0,"Tfor":0,"Gfor":0,"Cfor":0, "Nfor":0,"Arev":0,"Trev":0,"Grev":0,"Crev":0, "Nrev":0} | |
462 convertDic = {"A":"T","T":"A","G":"C","C":"G","N":"N"} | |
463 for offset in self.readDict: | |
464 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
465 for size in self.readDict[offset]: | |
466 if size in size_scope: | |
467 startbase = self.sequence[abs(offset)-self.windowoffset] | |
468 if offset < 0: | |
469 startbase = convertDic[startbase] | |
470 freqDic[startbase+"rev"] += 1 | |
471 else: | |
472 freqDic[startbase+"for"] += 1 | |
473 forward_sum = float ( freqDic["Afor"]+freqDic["Tfor"]+freqDic["Gfor"]+freqDic["Cfor"]+freqDic["Nfor"]) | |
474 reverse_sum = float ( freqDic["Arev"]+freqDic["Trev"]+freqDic["Grev"]+freqDic["Crev"]+freqDic["Nrev"]) | |
475 if forward_sum == 0 and reverse_sum == 0: | |
476 return ". | ." | |
477 elif reverse_sum == 0: | |
478 return "%s | ." % (freqDic["Tfor"] / forward_sum * 100) | |
479 elif forward_sum == 0: | |
480 return ". | %s" % (freqDic["Trev"] / reverse_sum * 100) | |
481 else: | |
482 return "%s | %s" % (freqDic["Tfor"] / forward_sum * 100, freqDic["Trev"] / reverse_sum * 100) | |
483 | |
484 | |
485 def readplot (self): | |
486 norm=self.norm | |
487 readmap = {} | |
488 for offset in self.readDict.keys(): | |
489 readmap[abs(offset)] = ( len(self.readDict.get(-abs(offset),[]))*norm , len(self.readDict.get(abs(offset),[]))*norm ) | |
490 mylist = [] | |
491 for offset in sorted(readmap): | |
492 if readmap[offset][1] != 0: | |
493 mylist.append("%s\t%s\t%s\t%s" % (self.gene, offset, readmap[offset][1], "F") ) | |
494 if readmap[offset][0] != 0: | |
495 mylist.append("%s\t%s\t%s\t%s" % (self.gene, offset, -readmap[offset][0], "R") ) | |
496 ## patch to avoid missing graphs when parsed by R-lattice. 27-08-2014. Test and validate ! | |
497 if not mylist: | |
498 mylist.append("%s\t%s\t%s\t%s" % (self.gene, 1, 0, "F") ) | |
499 ### | |
500 return mylist | |
501 | |
502 def readcoverage (self, upstream_coord=None, downstream_coord=None, windowName=None): | |
503 '''Use by MirParser tool''' | |
504 upstream_coord = upstream_coord or 1 | |
505 downstream_coord = downstream_coord or self.size | |
506 windowName = windowName or "%s_%s_%s" % (self.gene, upstream_coord, downstream_coord) | |
507 forORrev_coverage = dict ([(i,0) for i in xrange(1, downstream_coord-upstream_coord+1)]) | |
508 totalforward = self.readcount(upstream_coord=upstream_coord, downstream_coord=downstream_coord, polarity="forward") | |
509 totalreverse = self.readcount(upstream_coord=upstream_coord, downstream_coord=downstream_coord, polarity="reverse") | |
510 if totalforward > totalreverse: | |
511 majorcoverage = "forward" | |
512 for offset in self.readDict.keys(): | |
513 if (offset > 0) and ((offset-upstream_coord+1) in forORrev_coverage.keys() ): | |
514 for read in self.readDict[offset]: | |
515 for i in xrange(read): | |
516 try: | |
517 forORrev_coverage[offset-upstream_coord+1+i] += 1 | |
518 except KeyError: | |
519 continue # a sense read may span over the downstream limit | |
520 else: | |
521 majorcoverage = "reverse" | |
522 for offset in self.readDict.keys(): | |
523 if (offset < 0) and (-offset-upstream_coord+1 in forORrev_coverage.keys() ): | |
524 for read in self.readDict[offset]: | |
525 for i in xrange(read): | |
526 try: | |
527 forORrev_coverage[-offset-upstream_coord-i] += 1 ## positive coordinates in the instance, with + for forward coverage and - for reverse coverage | |
528 except KeyError: | |
529 continue # an antisense read may span over the upstream limit | |
530 output_list = [] | |
531 maximum = max (forORrev_coverage.values()) or 1 | |
532 for n in sorted (forORrev_coverage): | |
533 output_list.append("%s\t%s\t%s\t%s\t%s\t%s\t%s" % (self.biosample, windowName, n, float(n)/(downstream_coord-upstream_coord+1), forORrev_coverage[n], float(forORrev_coverage[n])/maximum, majorcoverage)) | |
534 return "\n".join(output_list) | |
535 | |
536 | |
537 def signature (self, minquery, maxquery, mintarget, maxtarget, scope, zscore="no", upstream_coord=None, downstream_coord=None): | |
538 ''' migration to memory saving by specifying possible subcoordinates | |
539 see the readcount method for further discussion | |
540 scope must be a python iterable; scope define the *relative* offset range to be computed''' | |
541 upstream_coord = upstream_coord or self.windowoffset | |
542 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
543 query_range = range (minquery, maxquery+1) | |
544 target_range = range (mintarget, maxtarget+1) | |
545 Query_table = {} | |
546 Target_table = {} | |
547 frequency_table = dict ([(i, 0) for i in scope]) | |
548 for offset in self.readDict: | |
549 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
550 for size in self.readDict[offset]: | |
551 if size in query_range: | |
552 Query_table[offset] = Query_table.get(offset, 0) + 1 | |
553 if size in target_range: | |
554 Target_table[offset] = Target_table.get(offset, 0) + 1 | |
555 for offset in Query_table: | |
556 for i in scope: | |
557 frequency_table[i] += min(Query_table[offset], Target_table.get(-offset -i +1, 0)) | |
558 if minquery==mintarget and maxquery==maxtarget: ## added to incorporate the division by 2 in the method (26/11/2013), see signature_options.py and lattice_signature.py | |
559 frequency_table = dict([(i,frequency_table[i]/2) for i in frequency_table]) | |
560 if zscore == "yes": | |
561 z_mean = mean(frequency_table.values() ) | |
562 z_std = std(frequency_table.values() ) | |
563 if z_std == 0: | |
564 frequency_table = dict([(i,0) for i in frequency_table] ) | |
565 else: | |
566 frequency_table = dict([(i, (frequency_table[i]- z_mean)/z_std) for i in frequency_table] ) | |
567 return frequency_table | |
568 | |
569 def hannon_signature (self, minquery, maxquery, mintarget, maxtarget, scope, upstream_coord=None, downstream_coord=None): | |
570 ''' migration to memory saving by specifying possible subcoordinates see the readcount method for further discussion | |
571 note that scope must be an iterable (a list or a tuple), which specifies the relative offsets that will be computed''' | |
572 upstream_coord = upstream_coord or self.windowoffset | |
573 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
574 query_range = range (minquery, maxquery+1) | |
575 target_range = range (mintarget, maxtarget+1) | |
576 Query_table = {} | |
577 Target_table = {} | |
578 Total_Query_Numb = 0 | |
579 general_frequency_table = dict ([(i,0) for i in scope]) | |
580 ## filtering the appropriate reads for the study | |
581 for offset in self.readDict: | |
582 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
583 for size in self.readDict[offset]: | |
584 if size in query_range: | |
585 Query_table[offset] = Query_table.get(offset, 0) + 1 | |
586 Total_Query_Numb += 1 | |
587 if size in target_range: | |
588 Target_table[offset] = Target_table.get(offset, 0) + 1 | |
589 for offset in Query_table: | |
590 frequency_table = dict ([(i,0) for i in scope]) | |
591 number_of_targets = 0 | |
592 for i in scope: | |
593 frequency_table[i] += Query_table[offset] * Target_table.get(-offset -i +1, 0) | |
594 number_of_targets += Target_table.get(-offset -i +1, 0) | |
595 for i in scope: | |
596 try: | |
597 general_frequency_table[i] += (1. / number_of_targets / Total_Query_Numb) * frequency_table[i] | |
598 except ZeroDivisionError : | |
599 continue | |
600 return general_frequency_table | |
601 | |
602 def phasing (self, size_range, scope): | |
603 ''' to calculate autocorelation like signal - scope must be an python iterable''' | |
604 read_table = {} | |
605 total_read_number = 0 | |
606 general_frequency_table = dict ([(i, 0) for i in scope]) | |
607 ## read input filtering | |
608 for offset in self.readDict: | |
609 for size in self.readDict[offset]: | |
610 if size in size_range: | |
611 read_table[offset] = read_table.get(offset, 0) + 1 | |
612 total_read_number += 1 | |
613 ## per offset read phasing computing | |
614 for offset in read_table: | |
615 frequency_table = dict ([(i, 0) for i in scope]) # local frequency table | |
616 number_of_targets = 0 | |
617 for i in scope: | |
618 if offset > 0: | |
619 frequency_table[i] += read_table[offset] * read_table.get(offset + i, 0) | |
620 number_of_targets += read_table.get(offset + i, 0) | |
621 else: | |
622 frequency_table[i] += read_table[offset] * read_table.get(offset - i, 0) | |
623 number_of_targets += read_table.get(offset - i, 0) | |
624 ## inclusion of local frequency table in the general frequency table (all offsets average) | |
625 for i in scope: | |
626 try: | |
627 general_frequency_table[i] += (1. / number_of_targets / total_read_number) * frequency_table[i] | |
628 except ZeroDivisionError : | |
629 continue | |
630 return general_frequency_table | |
631 | |
632 | |
633 | |
634 def z_signature (self, minquery, maxquery, mintarget, maxtarget, scope): | |
635 '''Must do: from numpy import mean, std, to use this method; scope must be a python iterable and defines the relative offsets to compute''' | |
636 frequency_table = self.signature (minquery, maxquery, mintarget, maxtarget, scope) | |
637 z_table = {} | |
638 frequency_list = [frequency_table[i] for i in sorted (frequency_table)] | |
639 if std(frequency_list): | |
640 meanlist = mean(frequency_list) | |
641 stdlist = std(frequency_list) | |
642 z_list = [(i-meanlist)/stdlist for i in frequency_list] | |
643 return dict (zip (sorted(frequency_table), z_list) ) | |
644 else: | |
645 return dict (zip (sorted(frequency_table), [0 for i in frequency_table]) ) | |
646 | |
647 def percent_signature (self, minquery, maxquery, mintarget, maxtarget, scope): | |
648 frequency_table = self.signature (minquery, maxquery, mintarget, maxtarget, scope) | |
649 total = float(sum ([self.readsizes().get(i,0) for i in set(range(minquery,maxquery)+range(mintarget,maxtarget))]) ) | |
650 if total == 0: | |
651 return dict( [(i,0) for i in scope]) | |
652 return dict( [(i, frequency_table[i]/total*100) for i in scope]) | |
653 | |
654 def pairer (self, overlap, minquery, maxquery, mintarget, maxtarget): | |
655 queryhash = defaultdict(list) | |
656 targethash = defaultdict(list) | |
657 query_range = range (int(minquery), int(maxquery)+1) | |
658 target_range = range (int(mintarget), int(maxtarget)+1) | |
659 paired_sequences = [] | |
660 for offset in self.readDict: # selection of data | |
661 for size in self.readDict[offset]: | |
662 if size in query_range: | |
663 queryhash[offset].append(size) | |
664 if size in target_range: | |
665 targethash[offset].append(size) | |
666 for offset in queryhash: | |
667 if offset >= 0: matched_offset = -offset - overlap + 1 | |
668 else: matched_offset = -offset - overlap + 1 | |
669 if targethash[matched_offset]: | |
670 paired = min ( len(queryhash[offset]), len(targethash[matched_offset]) ) | |
671 if offset >= 0: | |
672 for i in range (paired): | |
673 paired_sequences.append("+%s" % RNAtranslate ( self.sequence[offset:offset+queryhash[offset][i]]) ) | |
674 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-matched_offset-targethash[matched_offset][i]+1:-matched_offset+1]) ) ) | |
675 if offset < 0: | |
676 for i in range (paired): | |
677 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-offset-queryhash[offset][i]+1:-offset+1]) ) ) | |
678 paired_sequences.append("+%s" % RNAtranslate (self.sequence[matched_offset:matched_offset+targethash[matched_offset][i]] ) ) | |
679 return paired_sequences | |
680 | |
681 def pairable (self, overlap, minquery, maxquery, mintarget, maxtarget): | |
682 queryhash = defaultdict(list) | |
683 targethash = defaultdict(list) | |
684 query_range = range (int(minquery), int(maxquery)+1) | |
685 target_range = range (int(mintarget), int(maxtarget)+1) | |
686 paired_sequences = [] | |
687 | |
688 for offset in self.readDict: # selection of data | |
689 for size in self.readDict[offset]: | |
690 if size in query_range: | |
691 queryhash[offset].append(size) | |
692 if size in target_range: | |
693 targethash[offset].append(size) | |
694 | |
695 for offset in queryhash: | |
696 matched_offset = -offset - overlap + 1 | |
697 if targethash[matched_offset]: | |
698 if offset >= 0: | |
699 for i in queryhash[offset]: | |
700 paired_sequences.append("+%s" % RNAtranslate (self.sequence[offset:offset+i]) ) | |
701 for i in targethash[matched_offset]: | |
702 paired_sequences.append( "-%s" % RNAtranslate (antipara (self.sequence[-matched_offset-i+1:-matched_offset+1]) ) ) | |
703 if offset < 0: | |
704 for i in queryhash[offset]: | |
705 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-offset-i+1:-offset+1]) ) ) | |
706 for i in targethash[matched_offset]: | |
707 paired_sequences.append("+%s" % RNAtranslate (self.sequence[matched_offset:matched_offset+i] ) ) | |
708 return paired_sequences | |
709 | |
710 def newpairable_bowtie (self, overlap, minquery, maxquery, mintarget, maxtarget): | |
711 ''' revision of pairable on 3-12-2012, with focus on the offset shift problem (bowtie is 1-based cooordinates whereas python strings are 0-based coordinates''' | |
712 queryhash = defaultdict(list) | |
713 targethash = defaultdict(list) | |
714 query_range = range (int(minquery), int(maxquery)+1) | |
715 target_range = range (int(mintarget), int(maxtarget)+1) | |
716 bowtie_output = [] | |
717 | |
718 for offset in self.readDict: # selection of data | |
719 for size in self.readDict[offset]: | |
720 if size in query_range: | |
721 queryhash[offset].append(size) | |
722 if size in target_range: | |
723 targethash[offset].append(size) | |
724 counter = 0 | |
725 for offset in queryhash: | |
726 matched_offset = -offset - overlap + 1 | |
727 if targethash[matched_offset]: | |
728 if offset >= 0: | |
729 for i in queryhash[offset]: | |
730 counter += 1 | |
731 bowtie_output.append("%s\t%s\t%s\t%s\t%s" % (counter, "+", self.gene, offset-1, self.sequence[offset-1:offset-1+i]) ) # attention a la base 1-0 de l'offset | |
732 if offset < 0: | |
733 for i in queryhash[offset]: | |
734 counter += 1 | |
735 bowtie_output.append("%s\t%s\t%s\t%s\t%s" % (counter, "-", self.gene, -offset-i, self.sequence[-offset-i:-offset])) # attention a la base 1-0 de l'offset | |
736 return bowtie_output | |
737 | |
738 | |
739 def __main__(bowtie_index_path, bowtie_output_path): | |
740 sequenceDic = get_fasta (bowtie_index_path) | |
741 objDic = {} | |
742 F = open (bowtie_output_path, "r") # F is the bowtie output taken as input | |
743 for line in F: | |
744 fields = line.split() | |
745 polarity = fields[1] | |
746 gene = fields[2] | |
747 offset = int(fields[3]) | |
748 size = len (fields[4]) | |
749 try: | |
750 objDic[gene].addread (polarity, offset, size) | |
751 except KeyError: | |
752 objDic[gene] = SmRNAwindow(gene, sequenceDic[gene]) | |
753 objDic[gene].addread (polarity, offset, size) | |
754 F.close() | |
755 for gene in objDic: | |
756 print gene, objDic[gene].pairer(19,19,23,19,23) | |
757 | |
758 if __name__ == "__main__" : __main__(sys.argv[1], sys.argv[2]) |