comparison RepEnrich.py @ 0:1435d142041b draft

planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/repenrich commit d5ebd581fa3a22ca61ce07a31c01bb70610fbcf5
author drosofff
date Tue, 23 May 2017 18:37:22 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:1435d142041b
1 #!/usr/bin/env python
2 import argparse
3 import csv
4 import numpy
5 import os
6 import shlex
7 import shutil
8 import subprocess
9 import sys
10
11 parser = argparse.ArgumentParser(description='Part II: Conducting the alignments to the psuedogenomes. Before doing this step you will require 1) a bamfile of the unique alignments with index 2) a fastq file of the reads mapping to more than one location. These files can be obtained using the following bowtie options [EXAMPLE: bowtie -S -m 1 --max multimap.fastq mm9 mate1_reads.fastq] Once you have the unique alignment bamfile and the reads mapping to more than one location in a fastq file you can run this step. EXAMPLE: python master_output.py /users/nneretti/data/annotation/hg19/hg19_repeatmasker.txt /users/nneretti/datasets/repeatmapping/POL3/Pol3_human/HeLa_InputChIPseq_Rep1 HeLa_InputChIPseq_Rep1 /users/nneretti/data/annotation/hg19/setup_folder HeLa_InputChIPseq_Rep1_multimap.fastq HeLa_InputChIPseq_Rep1.bam')
12 parser.add_argument('--version', action='version', version='%(prog)s 0.1')
13 parser.add_argument('annotation_file', action= 'store', metavar='annotation_file', help='List RepeatMasker.org annotation file for your organism. The file may be downloaded from the RepeatMasker.org website. Example: /data/annotation/hg19/hg19_repeatmasker.txt')
14 parser.add_argument('outputfolder', action= 'store', metavar='outputfolder', help='List folder to contain results. Example: /outputfolder')
15 parser.add_argument('outputprefix', action= 'store', metavar='outputprefix', help='Enter prefix name for data. Example: HeLa_InputChIPseq_Rep1')
16 parser.add_argument('setup_folder', action= 'store', metavar='setup_folder', help='List folder that contains the repeat element psuedogenomes. Example /data/annotation/hg19/setup_folder')
17 parser.add_argument('fastqfile', action= 'store', metavar='fastqfile', help='Enter file for the fastq reads that map to multiple locations. Example /data/multimap.fastq')
18 parser.add_argument('alignment_bam', action= 'store', metavar='alignment_bam', help='Enter bamfile output for reads that map uniquely. Example /bamfiles/old.bam')
19 parser.add_argument('--pairedend', action= 'store', dest='pairedend', default= 'FALSE', help='Designate this option for paired-end sequencing. Default FALSE change to TRUE')
20 parser.add_argument('--collapserepeat', action= 'store', dest='collapserepeat', metavar='collapserepeat', default= 'Simple_repeat', help='Designate this option to generate a collapsed repeat type. Uncollapsed output is generated in addition to collapsed repeat type. Simple_repeat is default to simplify downstream analysis. You can change the default to another repeat name to collapse a seperate specific repeat instead or if the name of Simple_repeat is different for your organism. Default Simple_repeat')
21 parser.add_argument('--fastqfile2', action= 'store', dest='fastqfile2', metavar='fastqfile2', default= 'none', help='Enter fastqfile2 when using paired-end option. Default none')
22 parser.add_argument('--cpus', action= 'store', dest='cpus', metavar='cpus', default= "1", type=int, help='Enter available cpus per node. The more cpus the faster RepEnrich performs. RepEnrich is designed to only work on one node. Default: "1"')
23 parser.add_argument('--allcountmethod', action= 'store', dest='allcountmethod', metavar='allcountmethod', default= "FALSE", help='By default the pipeline only outputs the fraction count method. Consdidered to be the best way to count multimapped reads. Changing this option will include the unique count method, a conservative count, and the total count method, a liberal counting strategy. Our evaluation of simulated data indicated fraction counting is best. Default = FALSE, change to TRUE')
24 parser.add_argument('--is_bed', action= 'store', dest='is_bed', metavar='is_bed', default= 'FALSE', help='Is the annotation file a bed file. This is also a compatible format. The file needs to be a tab seperated bed with optional fields. Ex. format chr\tstart\tend\tName_element\tclass\tfamily. The class and family should identical to name_element if not applicable. Default FALSE change to TRUE')
25 args = parser.parse_args()
26
27 # parameters
28 annotation_file = args.annotation_file
29 outputfolder = args.outputfolder
30 outputfile_prefix = args.outputprefix
31 setup_folder = args.setup_folder
32 repeat_bed = setup_folder + os.path.sep + 'repnames.bed'
33 unique_mapper_bam = args.alignment_bam
34 fastqfile_1 = args.fastqfile
35 fastqfile_2 = args.fastqfile2
36 cpus = args.cpus
37 b_opt = "-k1 -p " +str(1) +" --quiet"
38 simple_repeat = args.collapserepeat
39 paired_end = args.pairedend
40 allcountmethod = args.allcountmethod
41 is_bed = args.is_bed
42
43 ################################################################################
44 # check that the programs we need are available
45 try:
46 subprocess.call(shlex.split("coverageBed -h"), stdout=open(os.devnull, 'wb'), stderr=open(os.devnull, 'wb'))
47 subprocess.call(shlex.split("bowtie --version"), stdout=open(os.devnull, 'wb'), stderr=open(os.devnull, 'wb'))
48 except OSError:
49 print ("Error: Bowtie or BEDTools not loaded")
50 raise
51
52 ################################################################################
53 # define a csv reader that reads space deliminated files
54 print ('Preparing for analysis using RepEnrich...')
55 csv.field_size_limit(sys.maxsize)
56 def import_text(filename, separator):
57 for line in csv.reader(open(filename), delimiter=separator,
58 skipinitialspace=True):
59 if line:
60 yield line
61
62 ################################################################################
63 # build dictionaries to convert repclass and rep families'
64 if is_bed == "FALSE":
65 repeatclass = {}
66 repeatfamily = {}
67 fin = import_text(annotation_file, ' ')
68 x = 0
69 for line in fin:
70 if x>2:
71 classfamily =[]
72 classfamily = line[10].split(os.path.sep)
73 line9 = line[9].replace("(","_").replace(")","_").replace("/","_")
74 repeatclass[line9] = classfamily[0]
75 if len(classfamily) == 2:
76 repeatfamily[line9] = classfamily[1]
77 else:
78 repeatfamily[line9] = classfamily[0]
79 x +=1
80 if is_bed == "TRUE":
81 repeatclass = {}
82 repeatfamily = {}
83 fin = open(annotation_file, 'r')
84 for line in fin:
85 line=line.strip('\n')
86 line=line.split('\t')
87 theclass =line[4]
88 thefamily = line[5]
89 line3 = line[3].replace("(","_").replace(")","_").replace("/","_")
90 repeatclass[line3] = theclass
91 repeatfamily[line3] = thefamily
92 fin.close()
93
94 ################################################################################
95 # build list of repeats initializing dictionaries for downstream analysis'
96 fin = import_text(setup_folder + os.path.sep + 'repgenomes_key.txt', '\t')
97 repeat_key ={}
98 rev_repeat_key ={}
99 repeat_list = []
100 reptotalcounts = {}
101 classfractionalcounts = {}
102 familyfractionalcounts = {}
103 classtotalcounts = {}
104 familytotalcounts = {}
105 reptotalcounts_simple = {}
106 fractionalcounts = {}
107 i = 0
108 for line in fin:
109 reptotalcounts[line[0]] = 0
110 fractionalcounts[line[0]] = 0
111 if line[0] in repeatclass:
112 classtotalcounts[repeatclass[line[0]]] = 0
113 classfractionalcounts[repeatclass[line[0]]] = 0
114 if line[0] in repeatfamily:
115 familytotalcounts[repeatfamily[line[0]]] = 0
116 familyfractionalcounts[repeatfamily[line[0]]] = 0
117 if line[0] in repeatfamily:
118 if repeatfamily[line[0]] == simple_repeat:
119 reptotalcounts_simple[simple_repeat] = 0
120 else:
121 reptotalcounts_simple[line[0]] = 0
122 repeat_list.append(line[0])
123 repeat_key[line[0]] = int(line[1])
124 rev_repeat_key[int(line[1])] = line[0]
125 fin.close()
126 ################################################################################
127 # map the repeats to the psuedogenomes:
128 if not os.path.exists(outputfolder):
129 os.mkdir(outputfolder)
130 ################################################################################
131 # Conduct the regions sorting
132 print ('Conducting region sorting on unique mapping reads....')
133 fileout= outputfolder + os.path.sep + outputfile_prefix + '_regionsorter.txt'
134 with open(fileout, 'w') as stdout:
135 command = shlex.split("coverageBed -abam " +unique_mapper_bam+" -b " +setup_folder + os.path.sep + 'repnames.bed')
136 p = subprocess.Popen(command, stdout=stdout)
137 p.communicate()
138 stdout.close()
139 filein = open(outputfolder + os.path.sep + outputfile_prefix + '_regionsorter.txt','r')
140 counts = {}
141 sumofrepeatreads=0
142 for line in filein:
143 line= line.split('\t')
144 if not str(repeat_key[line[3]]) in counts:
145 counts[str(repeat_key[line[3]])]=0
146 counts[str(repeat_key[line[3]])]+=int(line[4])
147 sumofrepeatreads+=int(line[4])
148 print ('Identified ' + str(sumofrepeatreads) + 'unique reads that mapped to repeats.')
149 ################################################################################
150 if paired_end == 'TRUE':
151 if not os.path.exists(outputfolder + os.path.sep + 'pair1_bowtie'):
152 os.mkdir(outputfolder + os.path.sep + 'pair1_bowtie')
153 if not os.path.exists(outputfolder + os.path.sep + 'pair2_bowtie'):
154 os.mkdir(outputfolder + os.path.sep + 'pair2_bowtie')
155 folder_pair1 = outputfolder + os.path.sep + 'pair1_bowtie'
156 folder_pair2 = outputfolder + os.path.sep + 'pair2_bowtie'
157 ################################################################################
158 print ("Processing repeat psuedogenomes...")
159 ps = []
160 psb= []
161 ticker= 0
162 for metagenome in repeat_list:
163 metagenomepath = setup_folder + os.path.sep + metagenome
164 file1=folder_pair1 + os.path.sep + metagenome + '.bowtie'
165 file2 =folder_pair2 + os.path.sep + metagenome + '.bowtie'
166 with open(file1, 'w') as stdout:
167 command = shlex.split("bowtie " + b_opt + " " + metagenomepath + " " + fastqfile_1)
168 p = subprocess.Popen(command,stdout=stdout)
169 with open(file2, 'w') as stdout:
170 command = shlex.split("bowtie " + b_opt + " " + metagenomepath + " " + fastqfile_2)
171 pp = subprocess.Popen(command,stdout=stdout)
172 ps.append(p)
173 ticker +=1
174 psb.append(pp)
175 ticker +=1
176 if ticker == cpus:
177 for p in ps:
178 p.communicate()
179 for p in psb:
180 p.communicate()
181 ticker = 0
182 psb =[]
183 ps = []
184 if len(ps) > 0:
185 for p in ps:
186 p.communicate()
187 stdout.close()
188
189 ################################################################################
190 # combine the output from both read pairs:
191 print ('sorting and combining the output for both read pairs...')
192 if not os.path.exists(outputfolder + os.path.sep + 'sorted_bowtie'):
193 os.mkdir(outputfolder + os.path.sep + 'sorted_bowtie')
194 sorted_bowtie = outputfolder + os.path.sep + 'sorted_bowtie'
195 for metagenome in repeat_list:
196 file1 = folder_pair1 + os.path.sep + metagenome + '.bowtie'
197 file2 = folder_pair2 + os.path.sep + metagenome + '.bowtie'
198 fileout= sorted_bowtie + os.path.sep + metagenome + '.bowtie'
199 with open(fileout, 'w') as stdout:
200 p1 = subprocess.Popen(['cat',file1,file2], stdout = subprocess.PIPE)
201 p2 = subprocess.Popen(['cut', '-f1',"-d "], stdin = p1.stdout, stdout = subprocess.PIPE)
202 p3 = subprocess.Popen(['cut', '-f1', "-d/"], stdin = p2.stdout, stdout = subprocess.PIPE)
203 p4 = subprocess.Popen(['sort'], stdin=p3.stdout, stdout = subprocess.PIPE)
204 p5 = subprocess.Popen(['uniq'], stdin=p4.stdout, stdout = stdout)
205 p5.communicate()
206 stdout.close()
207 print ('completed ...')
208 ################################################################################
209 if paired_end == 'FALSE':
210 if not os.path.exists(outputfolder + os.path.sep + 'pair1_bowtie'):
211 os.mkdir(outputfolder + os.path.sep + 'pair1_bowtie')
212 folder_pair1 = outputfolder + os.path.sep + 'pair1_bowtie'
213 ################################################################################
214 ps = []
215 ticker= 0
216 print ("Processing repeat psuedogenomes...")
217 for metagenome in repeat_list:
218 metagenomepath = setup_folder + os.path.sep + metagenome
219 file1=folder_pair1 + os.path.sep + metagenome + '.bowtie'
220 with open(file1, 'w') as stdout:
221 command = shlex.split("bowtie " + b_opt + " " + metagenomepath + " " + fastqfile_1)
222 p = subprocess.Popen(command,stdout=stdout)
223 ps.append(p)
224 ticker +=1
225 if ticker == cpus:
226 for p in ps:
227 p.communicate()
228 ticker = 0
229 ps = []
230 if len(ps) > 0:
231 for p in ps:
232 p.communicate()
233 stdout.close()
234
235 ################################################################################
236 # combine the output from both read pairs:
237 print ('Sorting and combining the output for both read pairs....')
238 if not os.path.exists(outputfolder + os.path.sep + 'sorted_bowtie'):
239 os.mkdir(outputfolder + os.path.sep + 'sorted_bowtie')
240 sorted_bowtie = outputfolder + os.path.sep + 'sorted_bowtie'
241 for metagenome in repeat_list:
242 file1 = folder_pair1 + os.path.sep + metagenome + '.bowtie'
243 fileout= sorted_bowtie + os.path.sep + metagenome + '.bowtie'
244 with open(fileout, 'w') as stdout:
245 p1 = subprocess.Popen(['cat',file1], stdout = subprocess.PIPE)
246 p2 = subprocess.Popen(['cut', '-f1'], stdin = p1.stdout, stdout = subprocess.PIPE)
247 p3 = subprocess.Popen(['cut', '-f1', "-d/"], stdin = p2.stdout, stdout = subprocess.PIPE)
248 p4 = subprocess.Popen(['sort'], stdin = p3.stdout,stdout = subprocess.PIPE)
249 p5 = subprocess.Popen(['uniq'], stdin = p4.stdout,stdout = stdout)
250 p5.communicate()
251 stdout.close()
252 print ('completed ...')
253
254 ################################################################################
255 # build a file of repeat keys for all reads
256 print ('Writing and processing intermediate files...')
257 sorted_bowtie = outputfolder + os.path.sep + 'sorted_bowtie'
258 readid = {}
259 sumofrepeatreads=0
260 for rep in repeat_list:
261 for data in import_text(sorted_bowtie + os.path.sep + rep + '.bowtie', '\t'):
262 readid[data[0]] = ''
263 for rep in repeat_list:
264 for data in import_text(sorted_bowtie + os.path.sep + rep + '.bowtie', '\t'):
265 readid[data[0]]+=str(repeat_key[rep]) + str(',')
266 for subfamilies in readid.values():
267 if not subfamilies in counts:
268 counts[subfamilies]=0
269 counts[subfamilies] +=1
270 sumofrepeatreads+=1
271 del readid
272 print ('Identified ' + str(sumofrepeatreads) + ' reads that mapped to repeats for unique and multimappers.')
273
274 ################################################################################
275 print ("Conducting final calculations...")
276 # build a converter to numeric label for repeat and yield a combined list of repnames seperated by backslash
277 def convert(x):
278 x = x.strip(',')
279 x = x.split(',')
280 global repname
281 repname = ""
282 for i in x:
283 repname = repname + os.path.sep + rev_repeat_key[int(i)]
284 # building the total counts for repeat element enrichment...
285 for x in counts.keys():
286 count= counts[x]
287 x = x.strip(',')
288 x = x.split(',')
289 for i in x:
290 reptotalcounts[rev_repeat_key[int(i)]] += int(count)
291 # building the fractional counts for repeat element enrichment...
292 for x in counts.keys():
293 count= counts[x]
294 x = x.strip(',')
295 x = x.split(',')
296 splits = len(x)
297 for i in x:
298 fractionalcounts[rev_repeat_key[int(i)]] += float(numpy.divide(float(count),float(splits)))
299 # building categorized table of repeat element enrichment...
300 repcounts = {}
301 repcounts['other'] = 0
302 for key in counts.keys():
303 convert(key)
304 repcounts[repname] = counts[key]
305 # building the total counts for class enrichment...
306 for key in reptotalcounts.keys():
307 classtotalcounts[repeatclass[key]] += reptotalcounts[key]
308 # building total counts for family enrichment...
309 for key in reptotalcounts.keys():
310 familytotalcounts[repeatfamily[key]] += reptotalcounts[key]
311 # building unique counts table'
312 repcounts2 = {}
313 for rep in repeat_list:
314 if "/" +rep in repcounts:
315 repcounts2[rep] = repcounts["/" +rep]
316 else:
317 repcounts2[rep] = 0
318 # building the fractionalcounts counts for class enrichment...
319 for key in fractionalcounts.keys():
320 classfractionalcounts[repeatclass[key]] += fractionalcounts[key]
321 # building fractional counts for family enrichment...
322 for key in fractionalcounts.keys():
323 familyfractionalcounts[repeatfamily[key]] += fractionalcounts[key]
324
325 ################################################################################
326 print ('Writing final output and removing intermediate files...')
327 # print output to file of the categorized counts and total overlapping counts:
328 if allcountmethod == "TRUE":
329 fout1 = open(outputfolder + os.path.sep + outputfile_prefix + '_total_counts.txt' , 'w')
330 for key in reptotalcounts.keys():
331 fout1.write(str(key) + '\t' + repeatclass[key] + '\t' + repeatfamily[key] + '\t' + str(reptotalcounts[key]) + '\n')
332 fout2 = open(outputfolder + os.path.sep + outputfile_prefix + '_class_total_counts.txt' , 'w')
333 for key in classtotalcounts.keys():
334 fout2.write(str(key) + '\t' + str(classtotalcounts[key]) + '\n')
335 fout3 = open(outputfolder + os.path.sep + outputfile_prefix + '_family_total_counts.txt' , 'w')
336 for key in familytotalcounts.keys():
337 fout3.write(str(key) + '\t' + str(familytotalcounts[key]) + '\n')
338 fout4 = open(outputfolder + os.path.sep + outputfile_prefix + '_unique_counts.txt' , 'w')
339 for key in repcounts2.keys():
340 fout4.write(str(key) + '\t' + repeatclass[key] + '\t' + repeatfamily[key] + '\t' + str(repcounts2[key]) + '\n')
341 fout5 = open(outputfolder + os.path.sep + outputfile_prefix + '_class_fraction_counts.txt' , 'w')
342 for key in classfractionalcounts.keys():
343 fout5.write(str(key) + '\t' + str(classfractionalcounts[key]) + '\n')
344 fout6 = open(outputfolder + os.path.sep + outputfile_prefix + '_family_fraction_counts.txt' , 'w')
345 for key in familyfractionalcounts.keys():
346 fout6.write(str(key) + '\t' + str(familyfractionalcounts[key]) + '\n')
347 fout7 = open(outputfolder + os.path.sep + outputfile_prefix + '_fraction_counts.txt' , 'w')
348 for key in fractionalcounts.keys():
349 fout7.write(str(key) + '\t' + repeatclass[key] + '\t' + repeatfamily[key] + '\t' + str(int(fractionalcounts[key])) + '\n')
350 fout1.close()
351 fout2.close()
352 fout3.close()
353 fout4.close()
354 fout5.close()
355 fout6.close()
356 fout7.close()
357 else:
358 fout1 = open(outputfolder + os.path.sep + outputfile_prefix + '_class_fraction_counts.txt' , 'w')
359 for key in classfractionalcounts.keys():
360 fout1.write(str(key) + '\t' + str(classfractionalcounts[key]) + '\n')
361 fout2 = open(outputfolder + os.path.sep + outputfile_prefix + '_family_fraction_counts.txt' , 'w')
362 for key in familyfractionalcounts.keys():
363 fout2.write(str(key) + '\t' + str(familyfractionalcounts[key])+ '\n')
364 fout3 = open(outputfolder + os.path.sep + outputfile_prefix + '_fraction_counts.txt' , 'w')
365 for key in fractionalcounts.keys():
366 fout3.write(str(key) + '\t' + repeatclass[key] + '\t' + repeatfamily[key] + '\t' + str(int(fractionalcounts[key])) + '\n')
367 fout1.close()
368 fout2.close()
369 fout3.close()
370
371 ################################################################################
372 # Remove Large intermediate files
373 if os.path.exists(outputfolder + os.path.sep + outputfile_prefix + '_regionsorter.txt'):
374 os.remove(outputfolder + os.path.sep + outputfile_prefix + '_regionsorter.txt')
375 if os.path.exists(outputfolder + os.path.sep + 'pair1_bowtie'):
376 shutil.rmtree(outputfolder + os.path.sep + 'pair1_bowtie')
377 if os.path.exists(outputfolder + os.path.sep + 'pair2_bowtie'):
378 shutil.rmtree(outputfolder + os.path.sep + 'pair2_bowtie')
379 if os.path.exists(outputfolder + os.path.sep + 'sorted_bowtie'):
380 shutil.rmtree(outputfolder + os.path.sep + 'sorted_bowtie')
381
382 print ("... Done")