Mercurial > repos > ebi-gxa > decoupler_pathway_inference
diff decoupler_aucell_score.py @ 3:c6787c2aee46 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit eea5c13f9e6e070a2359c59400773b01f9cd7567
author | ebi-gxa |
---|---|
date | Mon, 15 Jul 2024 10:56:37 +0000 |
parents | 82b7cd3e1bbd |
children |
line wrap: on
line diff
--- a/decoupler_aucell_score.py Tue Apr 16 11:49:19 2024 +0000 +++ b/decoupler_aucell_score.py Mon Jul 15 10:56:37 2024 +0000 @@ -1,16 +1,15 @@ import argparse -import os -import tempfile import anndata import decoupler as dc +import numba as nb import pandas as pd -import numba as nb def read_gmt_long(gmt_file): - """ - Reads a GMT file and produce a Pandas DataFrame in long format, ready to be passed to the AUCell method. + r""" + Reads a GMT file and produce a Pandas DataFrame in long format, ready to + be passed to the AUCell method. Parameters ---------- @@ -20,9 +19,29 @@ Returns ------- pd.DataFrame - A DataFrame with the gene sets. Each row represents a gene set to gene assignment, and the columns are "gene_set_name" and "genes". - >>> line = "HALLMARK_NOTCH_SIGNALING\\thttp://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_NOTCH_SIGNALING\\tJAG1\\tNOTCH3\\tNOTCH2\\tAPH1A\\tHES1\\tCCND1\\tFZD1\\tPSEN2\\tFZD7\\tDTX1\\tDLL1\\tFZD5\\tMAML2\\tNOTCH1\\tPSENEN\\tWNT5A\\tCUL1\\tWNT2\\tDTX4\\tSAP30\\tPPARD\\tKAT2A\\tHEYL\\tSKP1\\tRBX1\\tTCF7L2\\tARRB1\\tLFNG\\tPRKCA\\tDTX2\\tST3GAL6\\tFBXW11\\n" - >>> line2 = "HALLMARK_APICAL_SURFACE\\thttp://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_APICAL_SURFACE\\tB4GALT1\\tRHCG\\tMAL\\tLYPD3\\tPKHD1\\tATP6V0A4\\tCRYBG1\\tSHROOM2\\tSRPX\\tMDGA1\\tTMEM8B\\tTHY1\\tPCSK9\\tEPHB4\\tDCBLD2\\tGHRL\\tLYN\\tGAS1\\tFLOT2\\tPLAUR\\tAKAP7\\tATP8B1\\tEFNA5\\tSLC34A3\\tAPP\\tGSTM3\\tHSPB1\\tSLC2A4\\tIL2RB\\tRTN4RL1\\tNCOA6\\tSULF2\\tADAM10\\tBRCA1\\tGATA3\\tAFAP1L2\\tIL2RG\\tCD160\\tADIPOR2\\tSLC22A12\\tNTNG1\\tSCUBE1\\tCX3CL1\\tCROCC\\n" + A DataFrame with the gene sets. Each row represents a gene set to gene + assignment, and the columns are "gene_set_name" and "genes". + >>> import os + >>> import tempfile + >>> line = "HALLMARK_NOTCH_SIGNALING\ + ... \thttp://www.gsea-msigdb.org/\ + ... gsea/msigdb/human/geneset/HALLMARK_NOTCH_SIGNALING\ + ... \tJAG1\tNOTCH3\tNOTCH2\tAPH1A\tHES1\tCCND1\ + ... \tFZD1\tPSEN2\tFZD7\tDTX1\tDLL1\tFZD5\tMAML2\ + ... \tNOTCH1\tPSENEN\tWNT5A\tCUL1\tWNT2\tDTX4\ + ... \tSAP30\tPPARD\tKAT2A\tHEYL\tSKP1\tRBX1\tTCF7L2\ + ... \tARRB1\tLFNG\tPRKCA\tDTX2\tST3GAL6\tFBXW11\n" + >>> line2 = "HALLMARK_APICAL_SURFACE\ + ... \thttp://www.gsea-msigdb.org/\ + ... gsea/msigdb/human/geneset/HALLMARK_APICAL_SURFACE\ + ... \tB4GALT1\tRHCG\tMAL\tLYPD3\tPKHD1\tATP6V0A4\ + ... \tCRYBG1\tSHROOM2\tSRPX\tMDGA1\tTMEM8B\tTHY1\ + ... \tPCSK9\tEPHB4\tDCBLD2\tGHRL\tLYN\tGAS1\tFLOT2\ + ... \tPLAUR\tAKAP7\tATP8B1\tEFNA5\tSLC34A3\tAPP\ + ... \tGSTM3\tHSPB1\tSLC2A4\tIL2RB\tRTN4RL1\tNCOA6\ + ... \tSULF2\tADAM10\tBRCA1\tGATA3\tAFAP1L2\tIL2RG\ + ... \tCD160\tADIPOR2\tSLC22A12\tNTNG1\tSCUBE1\tCX3CL1\ + ... \tCROCC\n" >>> temp_dir = tempfile.gettempdir() >>> temp_gmt = os.path.join(temp_dir, "temp_file.gmt") >>> with open(temp_gmt, "w") as f: @@ -36,7 +55,8 @@ >>> len(df.loc[df["gene_set"] == "HALLMARK_APICAL_SURFACE"].gene.tolist()) 44 """ - # Create a list of dictionaries, where each dictionary represents a gene set + # Create a list of dictionaries, where each dictionary represents a + # gene set gene_sets = {} # Read the GMT file into a list of lines @@ -46,12 +66,20 @@ if not line: break fields = line.strip().split("\t") - gene_sets[fields[0]]= fields[2:] + gene_sets[fields[0]] = fields[2:] - return pd.concat(pd.DataFrame({'gene_set':k, 'gene':v}) for k, v in gene_sets.items()) + return pd.concat( + pd.DataFrame({"gene_set": k, "gene": v}) for k, v in gene_sets.items() + ) -def score_genes_aucell_mt(adata: anndata.AnnData, gene_set_gene: pd.DataFrame, use_raw=False, min_n_genes=5, var_gene_symbols_field=None): +def score_genes_aucell_mt( + adata: anndata.AnnData, + gene_set_gene: pd.DataFrame, + use_raw=False, + min_n_genes=5, + var_gene_symbols_field=None, +): """Score genes using Aucell. Parameters @@ -60,17 +88,23 @@ gene_set_gene: pd.DataFrame with columns gene_set and gene use_raw : bool, optional, False by default. min_n_genes : int, optional, 5 by default. - var_gene_symbols_field : str, optional, None by default. The field in var where gene symbols are stored + var_gene_symbols_field : str, optional, None by default. The field in var + where gene symbols are stored >>> import scanpy as sc >>> import decoupler as dc >>> adata = sc.datasets.pbmc68k_reduced() - >>> r_gene_list = adata.var[adata.var.index.str.startswith("RP")].index.tolist() - >>> m_gene_list = adata.var[adata.var.index.str.startswith("M")].index.tolist() + >>> r_gene_list = adata.var[ + ... adata.var.index.str.startswith("RP")].index.tolist() + >>> m_gene_list = adata.var[ + ... adata.var.index.str.startswith("M")].index.tolist() >>> gene_set = {} >>> gene_set["m"] = m_gene_list >>> gene_set["r"] = r_gene_list - >>> gene_set_df = pd.concat(pd.DataFrame({'gene_set':k, 'gene':v}) for k, v in gene_set.items()) + >>> gene_set_df = pd.concat( + ... pd.DataFrame( + ... {'gene_set':k, 'gene':v} + ... ) for k, v in gene_set.items()) >>> score_genes_aucell_mt(adata, gene_set_df, use_raw=False) >>> "AUCell_m" in adata.obs.columns True @@ -78,47 +112,72 @@ True """ - # if var_gene_symbols_fiels is provided, transform gene_set_gene df so that gene contains gene ids instead of gene symbols + # if var_gene_symbols_fiels is provided, transform gene_set_gene df so + # that gene contains gene ids instead of gene symbols if var_gene_symbols_field: - # merge the index of var to gene_set_gene df based on var_gene_symbols_field + # merge the index of var to gene_set_gene df based on + # var_gene_symbols_field var_id_symbols = adata.var[[var_gene_symbols_field]] - var_id_symbols['gene_id'] = var_id_symbols.index + var_id_symbols["gene_id"] = var_id_symbols.index - gene_set_gene = gene_set_gene.merge(var_id_symbols, left_on='gene', right_on=var_gene_symbols_field, how='left') - # this will still produce some empty gene_ids (genes in the gene_set_gene df that are not in the var df), fill those - # with the original gene symbol from the gene_set to avoid deforming the AUCell calculation - gene_set_gene['gene_id'] = gene_set_gene['gene_id'].fillna(gene_set_gene['gene']) - gene_set_gene['gene'] = gene_set_gene['gene_id'] - + gene_set_gene = gene_set_gene.merge( + var_id_symbols, + left_on="gene", + right_on=var_gene_symbols_field, + how="left", + ) + # this will still produce some empty gene_ids (genes in the + # gene_set_gene df that are not in the var df), fill those + # with the original gene symbol from the gene_set to avoid + # deforming the AUCell calculation + gene_set_gene["gene_id"] = gene_set_gene["gene_id"].fillna( + gene_set_gene["gene"] + ) + gene_set_gene["gene"] = gene_set_gene["gene_id"] + # run decoupler's run_aucell dc.run_aucell( - adata, net=gene_set_gene, source="gene_set", target="gene", use_raw=use_raw, min_n=min_n_genes - ) + adata, + net=gene_set_gene, + source="gene_set", + target="gene", + use_raw=use_raw, + min_n=min_n_genes, + ) for gs in gene_set_gene.gene_set.unique(): - if gs in adata.obsm['aucell_estimate'].keys(): + if gs in adata.obsm["aucell_estimate"].keys(): adata.obs[f"AUCell_{gs}"] = adata.obsm["aucell_estimate"][gs] def run_for_genelists( - adata, gene_lists, score_names, use_raw=False, gene_symbols_field=None, min_n_genes=5 + adata, + gene_lists, + score_names, + use_raw=False, + gene_symbols_field=None, + min_n_genes=5, ): if len(gene_lists) == len(score_names): for gene_list, score_names in zip(gene_lists, score_names): genes = gene_list.split(",") gene_sets = {} gene_sets[score_names] = genes - gene_set_gene_df = pd.concat(pd.DataFrame({'gene_set':k, 'gene':v}) for k, v in gene_sets.items()) - + gene_set_gene_df = pd.concat( + pd.DataFrame({"gene_set": k, "gene": v}) + for k, v in gene_sets.items() + ) + score_genes_aucell_mt( adata, gene_set_gene_df, use_raw, min_n_genes, - var_gene_symbols_field=gene_symbols_field + var_gene_symbols_field=gene_symbols_field, ) else: raise ValueError( - "The number of gene lists (separated by :) and score names (separated by :) must be the same" + "The number of gene lists (separated by :) and score names \ + (separated by :) must be the same" ) @@ -126,32 +185,41 @@ # Create command-line arguments parser parser = argparse.ArgumentParser(description="Score genes using Aucell") parser.add_argument( - "--input_file", type=str, help="Path to input AnnData file", required=True + "--input_file", + type=str, + help="Path to input AnnData file", + required=True, ) parser.add_argument( "--output_file", type=str, help="Path to output file", required=True ) - parser.add_argument("--gmt_file", type=str, help="Path to GMT file", required=False) + parser.add_argument( + "--gmt_file", type=str, help="Path to GMT file", required=False + ) # add argument for gene sets to score parser.add_argument( "--gene_sets_to_score", type=str, required=False, - help="Optional comma separated list of gene sets to score (the need to be in the gmt file)", + help="Optional comma separated list of gene sets to score \ + (the need to be in the gmt file)", ) # add argument for gene list (comma separated) to score parser.add_argument( "--gene_lists_to_score", type=str, required=False, - help="Comma separated list of genes to score. You can have more than one set of genes, separated by colon :", + help="Comma separated list of genes to score. You can have more \ + than one set of genes, separated by colon :", ) # argument for the score name when using the gene list parser.add_argument( "--score_names", type=str, required=False, - help="Name of the score column when using the gene list. You can have more than one set of score names, separated by colon :. It should be the same length as the number of gene lists.", + help="Name of the score column when using the gene list. You can \ + have more than one set of score names, separated by colon :. \ + It should be the same length as the number of gene lists.", ) parser.add_argument( "--gene_symbols_field", @@ -159,7 +227,8 @@ help="Name of the gene symbols field in the AnnData object", required=True, ) - # argument for min_n Minimum of targets per source. If less, sources are removed. + # argument for min_n Minimum of targets per source. If less, sources + # are removed. parser.add_argument( "--min_n", type=int, @@ -169,11 +238,18 @@ ) parser.add_argument("--use_raw", action="store_true", help="Use raw data") parser.add_argument( - "--write_anndata", action="store_true", help="Write the modified AnnData object" + "--write_anndata", + action="store_true", + help="Write the modified AnnData object", ) # argument for number of max concurrent processes - parser.add_argument("--max_threads", type=int, required=False, default=1, help="Number of max concurrent threads") - + parser.add_argument( + "--max_threads", + type=int, + required=False, + default=1, + help="Number of max concurrent threads", + ) # Parse command-line arguments args = parser.parse_args() @@ -189,23 +265,40 @@ msigdb = read_gmt_long(args.gmt_file) gene_sets_to_score = ( - args.gene_sets_to_score.split(",") if args.gene_sets_to_score else [] + args.gene_sets_to_score.split(",") + if args.gene_sets_to_score + else [] ) if gene_sets_to_score: - # we limit the GMT file read to the genesets specified in the gene_sets_to_score argument + # we limit the GMT file read to the genesets specified in the + # gene_sets_to_score argument msigdb = msigdb[msigdb["gene_set"].isin(gene_sets_to_score)] - - score_genes_aucell_mt(adata, msigdb, args.use_raw, args.min_n, var_gene_symbols_field=args.gene_symbols_field) + + score_genes_aucell_mt( + adata, + msigdb, + args.use_raw, + args.min_n, + var_gene_symbols_field=args.gene_symbols_field, + ) elif args.gene_lists_to_score is not None and args.score_names is not None: gene_lists = args.gene_lists_to_score.split(":") score_names = args.score_names.split(",") run_for_genelists( - adata, gene_lists, score_names, args.use_raw, args.gene_symbols_field, args.min_n + adata, + gene_lists, + score_names, + args.use_raw, + args.gene_symbols_field, + args.min_n, ) - # Save the modified AnnData object or generate a file with cells as rows and the new score_names columns + # Save the modified AnnData object or generate a file with cells as rows + # and the new score_names columns if args.write_anndata: adata.write_h5ad(args.output_file) else: - new_columns = [col for col in adata.obs.columns if col.startswith("AUCell_")] + new_columns = [ + col for col in adata.obs.columns if col.startswith("AUCell_") + ] adata.obs[new_columns].to_csv(args.output_file, sep="\t", index=True)