Mercurial > repos > ebi-gxa > scanpy_compute_graph
comparison scanpy-neighbours.xml @ 0:3d242b0d97d0 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/tree/develop/tools/tertiary-analysis/scanpy commit 9bf9a6e46a330890be932f60d1d996dd166426c4
author | ebi-gxa |
---|---|
date | Wed, 03 Apr 2019 11:11:14 -0400 |
parents | |
children | e7fd6981c0f0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:3d242b0d97d0 |
---|---|
1 <?xml version="1.0" encoding="utf-8"?> | |
2 <tool id="scanpy_compute_graph" name="Scanpy ComputeGraph" version="@TOOL_VERSION@+galaxy1"> | |
3 <description>to derive kNN graph</description> | |
4 <macros> | |
5 <import>scanpy_macros.xml</import> | |
6 </macros> | |
7 <expand macro="requirements"/> | |
8 <command detect_errors="exit_code"><![CDATA[ | |
9 ln -s '${input_obj_file}' input.h5 && | |
10 PYTHONIOENCODING=utf-8 scanpy-neighbours.py | |
11 -i input.h5 | |
12 -f '${input_format}' | |
13 -o output.h5 | |
14 -F '${output_format}' | |
15 #if $settings.default == "false" | |
16 -N '${settings.n_neighbours}' | |
17 -m '${settings.method}' | |
18 -s '${settings.random_seed}' | |
19 #if $settings.use_rep != "auto" | |
20 -r '${settings.use_rep}' | |
21 #end if | |
22 #if $settings.n_pcs | |
23 -n '${settings.n_pcs}' | |
24 #end if | |
25 #if $settings.knn | |
26 --knn | |
27 #end if | |
28 #if $settings.metric | |
29 -M '${settings.metric}' | |
30 #end if | |
31 #end if | |
32 ]]></command> | |
33 | |
34 <inputs> | |
35 <expand macro="input_object_params"/> | |
36 <expand macro="output_object_params"/> | |
37 <conditional name="settings"> | |
38 <param name="default" type="boolean" checked="true" label="Use programme defaults"/> | |
39 <when value="true"/> | |
40 <when value="false"> | |
41 <param name="n_neighbours" argument="--n-neighbors" type="integer" value="15" label="Maximum number of neighbours used"/> | |
42 <param name="use_rep" type="select" label="Use the indicated representation"> | |
43 <option value="X_pca">X_pca, use PCs</option> | |
44 <option value="X">X, use normalised expression values</option> | |
45 <option value="auto" selected="true">Automatically chosen based on problem size</option> | |
46 </param> | |
47 <param name="n_pcs" argument="--n-pcs" type="integer" value="50" optional="true" label="Number of PCs to use"/> | |
48 <param name="knn" argument="--knn/--no-knn" type="boolean" checked="true" label="Use hard threshold to restrict neighbourhood size (otherwise use a Gaussian kernel to down weight distant neighbours)"/> | |
49 <param name="method" argument="--method" type="select" label="Method for calculating connectivity"> | |
50 <option value="umap" selected="true">UMAP</option> | |
51 <option value="gauss">Gaussian</option> | |
52 </param> | |
53 <param name="metric" argument="--metric" type="text" value="euclidean" label="Distance metric"/> | |
54 <param name="random_seed" argument="--random-seed" type="integer" value="0" label="Seed for random number generator"/> | |
55 </when> | |
56 </conditional> | |
57 </inputs> | |
58 | |
59 <outputs> | |
60 <data name="output_h5" format="h5" from_work_dir="output.h5" label="${tool.name} on ${on_string}: Graph object"/> | |
61 </outputs> | |
62 | |
63 <tests> | |
64 <test> | |
65 <param name="input_obj_file" value="run_pca.h5"/> | |
66 <param name="input_format" value="anndata"/> | |
67 <param name="output_format" value="anndata"/> | |
68 <param name="default" value="false"/> | |
69 <param name="n_neighbours" value="15"/> | |
70 <param name="n_pcs" value="50"/> | |
71 <param name="knn" value="true"/> | |
72 <param name="random_seed" value="0"/> | |
73 <param name="method" value="umap"/> | |
74 <param name="metric" value="euclidean"/> | |
75 <output name="output_h5" file="compute_graph.h5" ftype="h5" compare="sim_size"/> | |
76 </test> | |
77 </tests> | |
78 | |
79 <help><![CDATA[ | |
80 ============================================================= | |
81 Compute a neighborhood graph of observations (`pp.neighbors`) | |
82 ============================================================= | |
83 | |
84 The neighbor search efficiency of this heavily relies on UMAP (McInnes et al, 2018), | |
85 which also provides a method for estimating connectivities of data points - | |
86 the connectivity of the manifold (`method=='umap'`). If `method=='diffmap'`, | |
87 connectivities are computed according to Coifman et al (2005), in the adaption of | |
88 Haghverdi et al (2016). | |
89 | |
90 @HELP@ | |
91 | |
92 @VERSION_HISTORY@ | |
93 ]]></help> | |
94 <expand macro="citations"/> | |
95 </tool> |