Mercurial > repos > ebi-gxa > scanpy_compute_graph
view scanpy-neighbours.xml @ 8:fe740b19e3b9 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/tree/develop/tools/tertiary-analysis/scanpy commit cbe12e02ee9ff5692be7547bdbe28fd1cd013a92
author | ebi-gxa |
---|---|
date | Thu, 20 Feb 2020 10:20:38 -0500 |
parents | 75240f9a8c96 |
children | c938bef2ca98 |
line wrap: on
line source
<?xml version="1.0" encoding="utf-8"?> <tool id="scanpy_compute_graph" name="Scanpy ComputeGraph" version="@TOOL_VERSION@+galaxy9" profile="@PROFILE@"> <description>to derive kNN graph</description> <macros> <import>scanpy_macros2.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ ln -s '${input_obj_file}' input.h5 && PYTHONIOENCODING=utf-8 scanpy-neighbors #if $settings.default == "false" --n-neighbors '${settings.n_neighbours}' --method '${settings.method}' --random-state '${settings.random_seed}' #if $settings.use_rep != "auto" --use-rep '${settings.use_rep}' #end if #if $settings.n_pcs --n-pcs '${settings.n_pcs}' #end if ${settings.knn} #end if @INPUT_OPTS@ @OUTPUT_OPTS@ ]]></command> <inputs> <expand macro="input_object_params"/> <expand macro="output_object_params"/> <conditional name="settings"> <param name="default" type="boolean" checked="true" label="Use programme defaults"/> <when value="true"/> <when value="false"> <param name="n_neighbours" argument="--n-neighbors" type="integer" value="15" label="Maximum number of neighbours used"/> <param name="use_rep" type="text" label="Use the indicated representation"> <option value="X_pca" selected="true">X_pca, use PCs</option> <option value="X">X, use normalised expression values</option> </param> <param name="n_pcs" argument="--n-pcs" type="integer" value="50" optional="true" label="Number of PCs to use"/> <param name="knn" argument="--knn" type="boolean" truevalue="" falsevalue="--no-knn" checked="true" label="Use hard threshold to restrict neighbourhood size (otherwise use a Gaussian kernel to down weight distant neighbours)"/> <param name="method" argument="--method" type="select" label="Method for calculating connectivity"> <option value="umap" selected="true">UMAP</option> <option value="gauss">Gaussian</option> </param> <param name="random_seed" argument="--random-seed" type="integer" value="0" label="Seed for random number generator"/> </when> </conditional> </inputs> <outputs> <expand macro="output_data_obj" description="Graph object"/> </outputs> <tests> <test> <param name="input_obj_file" value="run_pca.h5"/> <param name="input_format" value="anndata"/> <param name="output_format" value="anndata"/> <param name="default" value="false"/> <param name="n_neighbours" value="15"/> <param name="n_pcs" value="50"/> <param name="knn" value="true"/> <param name="random_seed" value="0"/> <param name="method" value="umap"/> <output name="output_h5" file="compute_graph.h5" ftype="h5" compare="sim_size"/> </test> </tests> <help><![CDATA[ ============================================================= Compute a neighborhood graph of observations (`pp.neighbors`) ============================================================= The neighbor search efficiency of this heavily relies on UMAP (McInnes et al, 2018), which also provides a method for estimating connectivities of data points - the connectivity of the manifold (`method=='umap'`). If `method=='diffmap'`, connectivities are computed according to Coifman et al (2005), in the adaption of Haghverdi et al (2016). @HELP@ @VERSION_HISTORY@ ]]></help> <expand macro="citations"/> </tool>