Mercurial > repos > ebi-gxa > scanpy_find_variable_genes
view scanpy-find-variable-genes.xml @ 0:305d0cbe0ffd draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/tree/develop/tools/tertiary-analysis/scanpy commit 9bf9a6e46a330890be932f60d1d996dd166426c4
author | ebi-gxa |
---|---|
date | Wed, 03 Apr 2019 11:12:05 -0400 |
parents | |
children | b089f4a55e6b |
line wrap: on
line source
<?xml version="1.0" encoding="utf-8"?> <tool id="scanpy_find_variable_genes" name="Scanpy FindVariableGenes" version="@TOOL_VERSION@+galaxy0"> <description>based on normalised dispersion of expression</description> <macros> <import>scanpy_macros.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ ln -s '${input_obj_file}' input.h5 && PYTHONIOENCODING=utf-8 scanpy-find-variable-genes.py -i input.h5 -f '${input_format}' -o output.h5 -F '${output_format}' --flavor '${flavor}' -b '${n_bin}' #if $parameters #set pars = ','.join([str($p['name']) for $p in $parameters]) -p '${pars}' #set mins = ','.join([str($p['min']) for $p in $parameters]) -l '${mins}' #set maxs = ','.join([str($p['max']) for $p in $parameters]) -j '${maxs}' #end if #if $n_top_gene -n '${n_top_gene}' #end if ]]></command> <inputs> <expand macro="input_object_params"/> <expand macro="output_object_params"/> <param name="flavor" argument="--flavor" type="select" value="seurat" label="Flavor of computing normalised dispersion"> <option value="seurat">Seurat</option> <option value="cell_ranger">Cell-ranger</option> </param> <repeat name="parameters" min="1" title="Parameters used to find variable genes"> <param name="name" type="select" label="Name of parameter to filter on"> <option value="mean">Mean of expression</option> <option value="disp">Dispersion of expression</option> </param> <param name="min" type="float" value="0" label="Min value"/> <param name="max" type="float" value="1e9" label="Max value"/> </repeat> <param name="n_bin" argument="--n-bins" type="integer" value="20" label="Number of bins for binning the mean expression"/> <param name="n_top_gene" argument="--n-top-genes" type="integer" optional="true" label="Number of top variable genes to keep"/> </inputs> <outputs> <data name="output_h5" format="h5" from_work_dir="output.h5" label="${tool.name} on ${on_string}: Variable genes"/> </outputs> <tests> <test> <param name="input_obj_file" value="normalise_data.h5"/> <param name="input_format" value="anndata"/> <param name="output_format" value="anndata"/> <param name="flavor" value="seurat"/> <param name="n_bin" value="20"/> <repeat name="parameters"> <param name="name" value="mean"/> <param name="min" value="0.0125"/> <param name="max" value="3"/> </repeat> <repeat name="parameters"> <param name="name" value="disp"/> <param name="min" value="0.5"/> <param name="max" value="1e9"/> </repeat> <output name="output_h5" file="find_variable_genes.h5" ftype="h5" compare="sim_size"/> </test> </tests> <help><![CDATA[ ============================================================ Extract highly variable genes (`pp.filter_genes_dispersion`) ============================================================ Depending on `flavor`, this reproduces the R-implementations of Seurat and Cell Ranger. The normalized dispersion is obtained by scaling with the mean and standard deviation of the dispersions for genes falling into a given bin for mean expression of genes. This means that for each bin of mean expression, highly variable genes are selected. @HELP@ @VERSION_HISTORY@ ]]></help> <expand macro="citations"> <citation type="doi">10.1038/nbt.3192</citation> <citation type="doi">10.1038/ncomms14049</citation> </expand> </tool>