Mercurial > repos > ebi-gxa > scanpy_integrate_mnn
view scanpy-integrate-mnn.xml @ 13:e9788746e0f6 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/tree/develop/tools/tertiary-analysis/scanpy commit 162313dc6ba68efc5003b1bd9b71a40aec87d826-dirty
author | ebi-gxa |
---|---|
date | Fri, 13 Oct 2023 14:08:05 +0000 |
parents | 3ba9371733a2 |
children | ff6decc0f432 |
line wrap: on
line source
<?xml version="1.0" encoding="utf-8"?> <tool id="scanpy_integrate_mnn" name="Scanpy MNN" version="@TOOL_VERSION@+galaxy93" profile="@PROFILE@"> <description>correct batch effects by matching mutual nearest neighbors</description> <macros> <import>scanpy_macros2.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ #if $batch_key ln -s '${input_obj_file}' input.h5 && PYTHONIOENCODING=utf-8 scanpy-integrate mnn --batch-key '${batch_key}' #if $batch_layer --batch-layer '${batch_layer}' #end if #if $key_added --key-added '${key_added}' #end if #if $var_subset #set var_subsets = ' '.join(["--var-subset '{name}' '{values}'".format(**$v) for $v in $var_subset]) ${var_subsets} #if $settings.default == "false" #if $settings.n_neighbors --n-neighbors '${settings.n_neighbors}' #end if #if $settings.sigma --sigma '${settings.sigma}' #end if #if not $settings.cos_norm_in ${settings.cos_norm_in} #end if #if $settings.svd_dim --svd-dim '${settings.svd_dim}' #end if #if not $settings.var_adj ${settings.var_adj} #end if #if $settings.compute_angle ${settings.compute_angle} #end if #if $settings.svd_mode --svd-mode '${settings.svd_mode}' #end if #end if @SAVE_MATRIX_OPTS@ #end if @INPUT_OPTS@ @OUTPUT_OPTS@ #else echo "No batch variables passed, simply passing original input as output unchanged." && cp '${input_obj_file}' output.h5 #end if ]]></command> <inputs> <expand macro="input_object_params"/> <expand macro="output_object_params"/> <expand macro="save_matrix_params"/> <param name="batch_key" type="text" argument="--batch-key" label="The name of the column in adata.obs that differentiates among experiments/batches."> <sanitizer> <valid initial="string.printable"/> </sanitizer> </param> <param name="batch_layer" type="text" argument="--batch-layer" label="Layer to batch correct. By default corrects the contents of .X."> <sanitizer> <valid initial="string.printable"/> </sanitizer> </param> <param name="key_added" argument="--key-added" type="text" optional="true" label="Key under which to add the computed results." help="By default a new layer will be created called 'mnn', 'mnn_{layer}' or 'mnn_{layer}_{key_added}' where those parameters were specified. A value of 'X' causes batch-corrected values to overwrite the original content of .X."/> <repeat name="var_subset" title="The subset of vars (list of str) to be used when performing MNN correction" min="0"> <param name="name" type="text" value="" label="Name of the categorical variable to filter on" help="e.g. 'highly_variable'"/> <param name="values" type="text" value="" label="Category or comma-separated list of categories" help="e.g. 'True'"/> </repeat> <conditional name="settings"> <param name="default" type="boolean" checked="true" label="Use programme defaults"/> <when value="true"/> <when value="false"> <param name="n_neighbors" argument="--n-neighbors" type="integer" value="20" label="Number of mutual nearest neighbors."/> <param name="sigma" argument="--sigma" type="float" value="1.0" label="Sigma" help="The bandwidth of the Gaussian smoothing kernel used to compute the correction vectors." /> <param name="cos_norm_in" argument="--no-cos-norm-in" type="boolean" truevalue="" falsevalue="--no-cos-norm-in" checked="True" label="Perform cosine normalization prior to computing corrected expression values?" /> <param name="svd_dim" argument="--svd-dim" type="integer" optional="true" label="Number of dimensions to use for summarizing biological substructure within each batch." help="If not set, biological components will not be removed from the correction vectors."/> <param name="var_adj" argument="--no-var-adj" type="boolean" truevalue="" falsevalue="--no-var-adj" checked="True" label="Adjust variance of the correction vectors?" help="Note this step takes most computing time." /> <param name="compute_angle" argument="--compute-angle" type="boolean" truevalue="--compute-angle" falsevalue="" checked="False" label="Compute the angle between each cell’s correction vector and the biological subspace of the reference batch?" /> <param name="svd_mode" argument="--svd-mode" type="select" label="SVD mode" help="'svd' computes SVD using a non-randomized SVD-via-ID algorithm, while 'rsvd' uses a randomized version. 'irlb' performs truncated SVD by implicitly restarted Lanczos bidiagonalization (forked from https://github.com/airysen/irlbpy)." > <option value="rsvd" selected="true">rsvd</option> <option value="svd">svd</option> <option value="irlb">irlb</option> </param> </when> </conditional> </inputs> <outputs> <expand macro="output_data_obj" description="Batch-corrected for ${batch_key}"/> </outputs> <!--<tests> <test> <param name="input_obj_file" value="find_cluster.h5"/> <param name="input_format" value="anndata"/> <param name="output_format" value="anndata"/> <param name="batch_key" value="louvain"/> <output name="output_h5" file="mnn.h5" ftype="h5" compare="sim_size"/> </test> <test> <param name="input_obj_file" value="find_cluster.h5"/> <param name="input_format" value="anndata"/> <param name="output_format" value="anndata"/> <output name="output_h5" file="mnn_copy.h5" ftype="h5" compare="sim_size"/> </test> </tests>--> <help><![CDATA[ .. class:: infomark **What it does** Corrects for batch effects by fitting linear models, gains statistical power via an EB framework where information is borrowed across genes. @HELP@ @VERSION_HISTORY@ ]]></help> <expand macro="citations"/> </tool>