Mercurial > repos > ebi-gxa > scanpy_run_pca
view scanpy-run-pca.xml @ 0:5063cd7f8c89 draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/tree/develop/tools/tertiary-analysis/scanpy commit 9bf9a6e46a330890be932f60d1d996dd166426c4
author | ebi-gxa |
---|---|
date | Wed, 03 Apr 2019 11:08:16 -0400 |
parents | |
children | 7798c318e7d7 |
line wrap: on
line source
<?xml version="1.0" encoding="utf-8"?> <tool id="scanpy_run_pca" name="Scanpy RunPCA" version="@TOOL_VERSION@+galaxy1"> <description>for dimensionality reduction</description> <macros> <import>scanpy_macros.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ ln -s '${input_obj_file}' input.h5 && PYTHONIOENCODING=utf-8 scanpy-run-pca.py -i input.h5 -f '${input_format}' -o output.h5 -F '${output_format}' -n '${n_pcs}' #if $run_mode.chunked -c --chunk-size '${run_mode.chunk_size}' #else #if $run_mode.zero_center -z #else -Z #end if #if $run_mode.svd_solver --svd-solver '${run_mode.svd_solver}' #end if #if $run_mode.random_seed is not None -s '${run_mode.random_seed}' #end if #end if #if $extra_outputs: #set extras = ' '.join(['--output-{}-file {}.csv'.format(x, x) for x in str($extra_outputs).split(',')]) ${extras} #end if @PLOT_OPTS@ ]]></command> <inputs> <expand macro="input_object_params"/> <expand macro="output_object_params"/> <param name="n_pcs" argument="--n-pcs" type="integer" value="50" label="Number of PCs to produce"/> <conditional name="run_mode"> <param name="chunked" argument="--chunked" type="boolean" checked="false" label="Perform incremental PCA by chunks"/> <when value="true"> <param name="chunk_size" argument="--chunk-size" type="integer" value="0" label="Chunk size"/> </when> <when value="false"> <param name="zero_center" argument="--zero-center" type="boolean" checked="true" label="Zero center data before scaling"/> <param name="svd_solver" argument="--svd-solver" type="select" optional="true" label="SVD solver"> <option value="arpack">ARPACK</option> <option value="randomised">Randomised</option> </param> <param name="random_seed" argument="--random-seed" type="integer" value="0" label="random_seed for numpy random number generator"/> </when> </conditional> <param name="extra_outputs" type="select" multiple="true" optional="true" label="Type of output"> <option value="embeddings">PCA embeddings</option> <option value="loadings">PCA loadings</option> <option value="stdev">PCs stdev</option> <option value="var-ratio">PCs proportion of variance</option> </param> <conditional name="do_plotting"> <param name="plot" type="boolean" checked="false" label="Make PCA plot"/> <when value="true"> <expand macro="output_plot_params"/> </when> <when value="false"/> </conditional> </inputs> <outputs> <data name="output_h5" format="h5" from_work_dir="output.h5" label="${tool.name} on ${on_string}: PCA object"/> <data name="output_png" format="png" from_work_dir="output.png" label="${tool.name} on ${on_string}: PCA plot"> <filter>do_plotting['plot']</filter> </data> <data name="output_embed" format="csv" from_work_dir="embeddings.csv" label="${tool.name} on ${on_string}: PCA embeddings"> <filter>extra_outputs and 'embeddings' in extra_outputs.split(',')</filter> </data> <data name="output_load" format="csv" from_work_dir="loadings.csv" label="${tool.name} on ${on_string}: PCA loadings"> <filter>extra_outputs and 'loadings' in extra_outputs.split(',')</filter> </data> <data name="output_stdev" format="csv" from_work_dir="stdev.csv" label="${tool.name} on ${on_string}: PCA stdev"> <filter>extra_outputs and 'stdev' in extra_outputs.split(',')</filter> </data> <data name="output_vprop" format="csv" from_work_dir="var-ratio.csv" label="${tool.name} on ${on_string}: PC explained proportion of variance"> <filter>extra_outputs and 'var-ratio' in extra_outputs.split(',')</filter> </data> </outputs> <tests> <test> <param name="input_obj_file" value="scale_data.h5"/> <param name="input_format" value="anndata"/> <param name="output_format" value="anndata"/> <param name="extra_outputs" value="embeddings"/> <param name="n_pcs" value="50"/> <param name="zero_center" value="true"/> <param name="svd_solver" value="arpack"/> <param name="random_seed" value="0"/> <param name="chunked" value="false"/> <param name="plot" value="true"/> <param name="color_by" value="n_genes"/> <output name="output_h5" file="run_pca.h5" ftype="h5" compare="sim_size"/> <output name="output_png" file="run_pca.png" ftype="png" compare="sim_size"/> <output name="output_embed" file="run_pca.embeddings.csv" ftype="csv" compare="sim_size"> <assert_contents> <has_n_columns n="50" sep=","/> </assert_contents> </output> </test> </tests> <help><![CDATA[ ======================================================================================================= Computes PCA (principal component analysis) coordinates, loadings and variance decomposition (`tl.pca`) ======================================================================================================= It uses the implementation of *scikit-learn*. @HELP@ @VERSION_HISTORY@ ]]></help> <expand macro="citations"/> </tool>