Mercurial > repos > ebi-gxa > scanpy_run_tsne
diff scanpy-run-tsne.xml @ 0:f6f189ce4ebc draft
planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/tree/develop/tools/tertiary-analysis/scanpy commit 9bf9a6e46a330890be932f60d1d996dd166426c4
author | ebi-gxa |
---|---|
date | Wed, 03 Apr 2019 11:10:51 -0400 |
parents | |
children | 2e74fd7b5f45 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scanpy-run-tsne.xml Wed Apr 03 11:10:51 2019 -0400 @@ -0,0 +1,127 @@ +<?xml version="1.0" encoding="utf-8"?> +<tool id="scanpy_run_tsne" name="Scanpy RunTSNE" version="@TOOL_VERSION@+galaxy1"> + <description>visualise cell clusters using tSNE</description> + <macros> + <import>scanpy_macros.xml</import> + </macros> + <expand macro="requirements"/> + <command detect_errors="exit_code"><![CDATA[ +ln -s '${input_obj_file}' input.h5 && +PYTHONIOENCODING=utf-8 scanpy-run-tsne.py + -i input.h5 + -f '${input_format}' + -o output.h5 + -F '${output_format}' + #if $embeddings + --output-embeddings-file embeddings.csv + #end if + #if $settings.default == "false" + #if $settings.perplexity_file + --perplexity \$( cat $settings.perplexity_file ) + #else + --perplexity '${settings.perplexity}' + #end if + --early-exaggeration '${settings.early_exaggeration}' + --learning-rate '${settings.learning_rate}' + #if $settings.use_rep != "auto" + -r '${settings.use_rep}' + #end if + #if $settings.n_pc + -n '${settings.n_pc}' + #end if + #if not $settings.fast_tsne + --no-fast-tsne + #end if + #if $settings.n_job + --n-jobs '${settings.n_job}' + #end if + #if $settings.random_seed is not None + -s '${settings.random_seed}' + #end if + #end if + +@PLOT_OPTS@ +]]></command> + + <inputs> + <expand macro="input_object_params"/> + <expand macro="output_object_params"/> + <param name="embeddings" type="boolean" checked="true" label="Output embeddings in csv format"/> + + <conditional name="settings"> + <param name="default" type="boolean" checked="true" label="Use programme defaults"/> + <when value="true"/> + <when value="false"> + <param name="use_rep" argument="--use-rep" type="select" label="Use the indicated representation"> + <option value="X_pca">X_pca, use PCs</option> + <option value="X">X, use normalised expression values</option> + <option value="auto" selected="true">Automatically chosen based on problem size</option> + </param> + <param name="perplexity" argument="--perplexity" type="float" value="30" label="The perplexity is related to the number of nearest neighbours, select a value between 5 and 50"/> + <param name="perplexity_file" argument="--perplexity" type="data" format="txt,tsv" label="The perplexity is related to the number of nearest neighbours" help="For use with the parameter iterator. Overrides the persplexity option above" optional="true"/> + <param name="early_exaggeration" argument="--early-exaggeration" type="float" value="12" label="Controls the tightness within and between clusters"/> + <param name="learning_rate" argument="--learning-rate" type="float" value="1000" label="Learning rate, should be between 100 and 1000"/> + <param name="fast_tsne" type="boolean" checked="true" label="Use multicoreTSNE"/> + <param name="n_job" argument="--n-jobs" type="integer" optional="true" label="The number of jobs"/> + <param name="n_pc" argument="--n-pcs" type="integer" optional="true" label="The number of PCs to use"/> + <param name="random_seed" argument="--random-seed" type="integer" value="0" label="Seed for random number generator"/> + </when> + </conditional> + + <conditional name="do_plotting"> + <param name="plot" type="boolean" checked="false" label="Make tSNE plot"/> + <when value="true"> + <expand macro="output_plot_params"/> + <param name="color_by" argument="--color-by" type="text" value="louvain" label="Color by attributes, comma separated strings"/> + </when> + <when value="false"/> + </conditional> + </inputs> + + <outputs> + <data name="output_h5" format="h5" from_work_dir="output.h5" label="${tool.name} on ${on_string}: tSNE object"/> + <data name="output_png" format="png" from_work_dir="output.png" label="${tool.name} on ${on_string}: tSNE plot"> + <filter>do_plotting['plot']</filter> + </data> + <data name="output_embed" format="csv" from_work_dir="embeddings.csv" label="${tool.name} on ${on_string}: tSNE embeddings"> + <filter>embeddings</filter> + </data> + </outputs> + + <tests> + <test> + <param name="input_obj_file" value="find_cluster.h5"/> + <param name="input_format" value="anndata"/> + <param name="output_format" value="anndata"/> + <param name="default" value="false"/> + <param name="embeddings" value="true"/> + <param name="random_seed" value="0"/> + <param name="plot" value="true"/> + <param name="color_by" value="louvain"/> + <output name="output_h5" file="run_tsne.h5" ftype="h5" compare="sim_size"/> + <output name="output_png" file="run_tsne.png" ftype="png" compare="sim_size"/> + <output name="output_embed" file="run_tsne.embeddings.csv" ftype="csv" compare="sim_size"> + <assert_contents> + <has_n_columns n="2" sep=","/> + </assert_contents> + </output> + </test> + </tests> + + <help><![CDATA[ +================================================================== +t-distributed stochastic neighborhood embedding (tSNE) (`tl.tsne`) +================================================================== + +t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been +proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, +we use the implementation of *scikit-learn* (Pedregosa et al, 2011). + +It yields `X_tsne`, tSNE coordinates of data. + +@HELP@ + +@VERSION_HISTORY@ +]]></help> + <expand macro="citations"/> +</tool>