Mercurial > repos > ebi-gxa > scanpy_run_tsne
view scanpy-run-tsne.xml @ 12:dccd544c21ca draft
"planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/tree/develop/tools/tertiary-analysis/scanpy commit 62f47287c7e8449c59a1f1f454852ddc669b1b1e-dirty"
author | ebi-gxa |
---|---|
date | Mon, 07 Sep 2020 14:01:11 +0000 |
parents | e61ba8b05578 |
children | b5e1939cc155 |
line wrap: on
line source
<?xml version="1.0" encoding="utf-8"?> <tool id="scanpy_run_tsne" name="Scanpy RunTSNE" version="@TOOL_VERSION@+galaxy0" profile="@PROFILE@"> <description>visualise cell clusters using tSNE</description> <macros> <import>scanpy_macros2.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ ln -s '${input_obj_file}' input.h5 && PYTHONIOENCODING=utf-8 scanpy-run-tsne #if $use_rep != "auto" --use-rep '${use_rep}' #end if #if $key_added --key-added '${key_added}' #end if #if $embeddings --export-embedding embeddings.tsv #end if #if $settings.default == "false" #if $settings.perplexity_file --perplexity \$( cat $settings.perplexity_file ) #else --perplexity '${settings.perplexity}' #end if --early-exaggeration '${settings.early_exaggeration}' --learning-rate '${settings.learning_rate}' #if $settings.n_pc --n-pcs ${settings.n_pc} #end if #if not $settings.fast_tsne --no-fast-tsne #end if #if $settings.n_job --n-jobs ${settings.n_job} #end if #if $settings.random_seed is not None --random-state ${settings.random_seed} #end if #end if @INPUT_OPTS@ @OUTPUT_OPTS@ ]]></command> <inputs> <expand macro="input_object_params"/> <expand macro="output_object_params"/> <param name="embeddings" type="boolean" checked="true" label="Output embeddings in tsv format"/> <param name="use_rep" argument="--use-rep" type="select" label="Use the indicated representation"> <option value="X_pca">X_pca, use PCs</option> <option value="X">X, use normalised expression values</option> <option value="auto" selected="true">Automatically chosen based on problem size</option> </param> <param name="key_added" argument="--key-added" type="text" optional="true" label="Additional suffix to the name of the slot to save the embedding"/> <conditional name="settings"> <param name="default" type="boolean" checked="true" label="Use programme defaults"/> <when value="true"/> <when value="false"> <param name="perplexity" argument="--perplexity" type="float" value="30" label="The perplexity is related to the number of nearest neighbours, select a value between 5 and 50"/> <param name="perplexity_file" argument="--perplexity" type="data" format="txt,tsv" label="The perplexity is related to the number of nearest neighbours" help="For use with the parameter iterator. Overrides the persplexity option above" optional="true"/> <param name="early_exaggeration" argument="--early-exaggeration" type="float" value="12" label="Controls the tightness within and between clusters"/> <param name="learning_rate" argument="--learning-rate" type="float" value="1000" label="Learning rate, should be between 100 and 1000"/> <param name="fast_tsne" type="boolean" checked="false" label="Use multicoreTSNE" help="Depending on the setup and version, the availability of the needed library might vary and hence fail."/> <param name="n_job" argument="--n-jobs" type="integer" optional="true" label="The number of jobs"/> <param name="n_pc" argument="--n-pcs" type="integer" optional="true" label="The number of PCs to use"/> <param name="random_seed" argument="--random-seed" type="integer" value="0" label="Seed for random number generator"/> </when> </conditional> </inputs> <outputs> <expand macro="output_data_obj" description="tSNE object"/> <data name="output_embed" format="tabular" from_work_dir="embeddings.tsv" label="${tool.name} on ${on_string}: tSNE embeddings"> <filter>embeddings</filter> </data> </outputs> <tests> <test> <param name="input_obj_file" value="find_cluster.h5"/> <param name="input_format" value="anndata"/> <param name="output_format" value="anndata"/> <param name="default" value="false"/> <param name="embeddings" value="true"/> <param name="random_seed" value="0"/> <output name="output_h5" file="run_tsne.h5" ftype="h5" compare="sim_size"/> <output name="output_embed" file="run_tsne.embeddings.tsv" ftype="tabular" compare="sim_size"> <assert_contents> <has_n_columns n="3"/> </assert_contents> </output> </test> </tests> <help><![CDATA[ ========================================================================= t-distributed stochastic neighborhood embedding (tSNE) (`scanpy.tl.tsne`) ========================================================================= For making TSNE plots, please use `Scanpy PlotEmbed` with the output of this tool and enter "tsne" as the name of the embedding to plot. t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, we use the implementation of *scikit-learn* (Pedregosa et al, 2011). It yields `X_tsne`, tSNE coordinates of data. @HELP@ @VERSION_HISTORY@ ]]></help> <expand macro="citations"/> </tool>