Mercurial > repos > ecology > ecology_beta_diversity
comparison graph_homogeneity_normality.r @ 0:fb7b2cbd80bb draft default tip
"planemo upload for repository https://github.com/Marie59/Data_explo_tools commit 60627aba07951226c8fd6bb3115be4bd118edd4e"
author | ecology |
---|---|
date | Fri, 13 Aug 2021 18:17:38 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:fb7b2cbd80bb |
---|---|
1 #Rscript | |
2 | |
3 ####################################### | |
4 ## Homogeneity and normality ## | |
5 ####################################### | |
6 | |
7 #####Packages : car | |
8 # ggplot2 | |
9 # ggpubr | |
10 # Cowplot | |
11 | |
12 #####Load arguments | |
13 | |
14 args <- commandArgs(trailingOnly = TRUE) | |
15 | |
16 if (length(args) == 0) { | |
17 stop("This tool needs at least one argument") | |
18 }else{ | |
19 table <- args[1] | |
20 hr <- args[2] | |
21 date <- as.numeric(args[3]) | |
22 spe <- as.numeric(args[4]) | |
23 var <- as.numeric(args[5]) | |
24 } | |
25 | |
26 if (hr == "false") { | |
27 hr <- FALSE | |
28 }else{ | |
29 hr <- TRUE | |
30 } | |
31 | |
32 #####Import data | |
33 data <- read.table(table, sep = "\t", dec = ".", header = hr, fill = TRUE, encoding = "UTF-8") | |
34 data <- na.omit(data) | |
35 coldate <- colnames(data)[date] | |
36 colspe <- colnames(data)[spe] | |
37 colvar <- colnames(data)[var] | |
38 | |
39 #####Your analysis | |
40 | |
41 ####Homogeneity of the variance#### | |
42 | |
43 ##Test of Levene## | |
44 testlevene <- function(data, col1, col2) { | |
45 data[, col1] <- as.numeric(data[, col1]) | |
46 data[, col2] <- as.factor(data[, col2]) | |
47 tb_levene <- car::leveneTest(y = data[, col1], group = data[, col2]) | |
48 | |
49 return(tb_levene) | |
50 } | |
51 levene <- capture.output(testlevene(data = data, col1 = colvar, col2 = colspe)) | |
52 | |
53 cat("\nwrite table with levene test. \n--> \"", paste(levene, "\"\n", sep = ""), file = "levene.txt", sep = "", append = TRUE) | |
54 | |
55 ##Two boxplots to visualize it## | |
56 | |
57 homog_var <- function(data, col1, col2, col3, mult) { | |
58 data[, col1] <- as.factor(data[, col1]) | |
59 if (mult) { | |
60 for (spe in unique(data[, col2])) { | |
61 data_cut <- data[data[, col2] == spe, ] | |
62 graph_2 <- ggplot2::ggplot(data_cut, ggplot2::aes_string(x = col1, y = col3, color = col1)) + | |
63 ggplot2::geom_boxplot() + | |
64 ggplot2::theme(legend.position = "none", axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust = 1), panel.background = ggplot2::element_rect(fill = "#d9d4c5", colour = "#d9d4c5", linetype = "solid"), | |
65 panel.grid.major = ggplot2::element_line(linetype = "solid", colour = "white"), | |
66 panel.grid.minor = ggplot2::element_line(linetype = "solid", colour = "white")) | |
67 | |
68 ggplot2::ggsave(paste("Homogeneity_of_", spe, ".png"), graph_2, width = 16, height = 9, units = "cm") | |
69 } | |
70 }else{ | |
71 graph_1 <- ggplot2::ggplot(data, ggplot2::aes_string(x = col1, y = col3, color = col1)) + | |
72 ggplot2::geom_boxplot() + | |
73 ggplot2::theme(legend.position = "none", axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust = 1)) | |
74 | |
75 #Put multiple panels | |
76 graph_2 <- graph_1 + ggplot2::facet_grid(rows = ggplot2::vars(data[, col2]), scales = "free") + | |
77 ggplot2::theme(panel.background = ggplot2::element_rect(fill = "#d9d4c5", colour = "#d9d4c5", linetype = "solid"), | |
78 panel.grid.major = ggplot2::element_line(linetype = "solid", colour = "white"), | |
79 panel.grid.minor = ggplot2::element_line(linetype = "solid", colour = "white")) | |
80 | |
81 ggplot2::ggsave("Homogeneity.png", graph_2, width = 16, height = 9, units = "cm") | |
82 } | |
83 } | |
84 | |
85 ####Normality of the distribution#### | |
86 # Kolmogorov-Smirnov test | |
87 | |
88 ks <- capture.output(ks.test(x = data[, var], y = "pnorm", alternative = "two.sided")) | |
89 | |
90 cat("\nwrite table with Kolmogorov-Smirnov test. \n--> \"", paste(ks, "\"\n", sep = ""), file = "ks.txt", sep = "", append = TRUE) | |
91 | |
92 #Histogramm with distribution line | |
93 graph_hist <- function(data, var1) { | |
94 graph_hist <- ggplot2::ggplot(data) + | |
95 ggplot2::geom_histogram(ggplot2::aes_string(x = var1), binwidth = 2, color = "black", fill = "white") + | |
96 ggplot2::geom_density(ggplot2::aes_string(var1), alpha = 0.12, fill = "red") + | |
97 ggplot2::ggtitle("Distribution histogram") | |
98 | |
99 return(graph_hist) | |
100 } | |
101 | |
102 #Add the mean dashed line | |
103 add_mean <- function(graph, var1) { | |
104 graph_mean <- graph + ggplot2::geom_vline(xintercept = mean(data[, var1]), | |
105 color = "midnightblue", linetype = "dashed", size = 1) | |
106 | |
107 return(graph_mean) | |
108 } | |
109 | |
110 #Adding a QQplot | |
111 graph_qqplot <- function(data, var1) { | |
112 graph2 <- ggpubr::ggqqplot(data, var1, color = "midnightblue") + ggplot2::ggtitle("Q-Q plot") | |
113 | |
114 return(graph2) | |
115 } | |
116 | |
117 #On suppose que les données sont distribuées normalement lorsque les points suivent approximativement la ligne de référence à 45 degrés. | |
118 | |
119 graph_fin <- function(graph1, graph2) { | |
120 graph <- cowplot::plot_grid(graph1, graph2, ncol = 2, nrow = 1) | |
121 | |
122 ggplot2::ggsave("Normal_distribution.png", graph, width = 10, height = 7, units = "cm") | |
123 } | |
124 | |
125 mult <- ifelse(length(unique(data[, colspe])) == 2, FALSE, TRUE) | |
126 homog_var(data, col1 = coldate, col2 = colspe, col3 = colvar, mult = mult) | |
127 | |
128 graph_hist1 <- graph_hist(data, var1 = colvar) | |
129 graph_mean <- add_mean(graph = graph_hist1, var1 = colvar) | |
130 graph_fin(graph1 = graph_mean, graph2 = graph_qqplot(data, var1 = colvar)) |