Mercurial > repos > ecology > ecology_homogeneity_normality
view graph_stat_presence_abs.r @ 1:3df8937fd6fd draft default tip
"planemo upload for repository https://github.com/Marie59/Data_explo_tools commit 60627aba07951226c8fd6bb3115be4bd118edd4e"
author | ecology |
---|---|
date | Fri, 13 Aug 2021 18:16:46 +0000 |
parents | 9f679060051a |
children |
line wrap: on
line source
#Rscript ################################ ## Median and dispersion ## ################################ #####Packages : Cowplot # ggplot2 #####Load arguments args <- commandArgs(trailingOnly = TRUE) if (length(args) == 0) { stop("This tool needs at least one argument") }else{ table <- args[1] hr <- args[2] var <- as.numeric(args[3]) spe <- as.numeric(args[4]) loc <- as.numeric(args[5]) time <- as.numeric(args[6]) source(args[7]) } if (hr == "false") { hr <- FALSE }else{ hr <- TRUE } #####Import data data <- read.table(table, sep = "\t", dec = ".", header = hr, fill = TRUE, encoding = "UTF-8") data <- na.omit(data) colvar <- colnames(data)[var] colspe <- colnames(data)[spe] colloc <- colnames(data)[loc] coltime <- colnames(data)[time] data <- data[grep("^$", data[, spe], invert = TRUE), ] #####Your analysis ####Median and data dispersion#### #Median graph_median <- function(data, var) { graph_median <- ggplot2::ggplot(data, ggplot2::aes_string(y = var)) + ggplot2::geom_boxplot(color = "darkblue") + ggplot2::theme(legend.position = "none") + ggplot2::ggtitle("Median") return(graph_median) } #Dispersion dispersion <- function(data, var, var2) { graph_dispersion <- ggplot2::ggplot(data) + ggplot2::geom_point(ggplot2::aes_string(x = var2, y = var, color = var2)) + ggplot2::scale_fill_brewer(palette = "Set3") + ggplot2::theme(legend.position = "none", axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust = 1), plot.title = ggplot2::element_text(color = "black", size = 12, face = "bold")) + ggplot2::ggtitle("Dispersion") return(graph_dispersion) } #The 2 graph med_disp <- function(med, disp) { graph <- cowplot::plot_grid(med, disp, ncol = 1, nrow = 2, vjust = -5, scales = "free") ggplot2::ggsave("Med_Disp.png", graph, width = 12, height = 20, units = "cm") } #### Zero problem in data #### #Put data in form data_num <- make_table_analyse(data, colvar, colspe, colloc, coltime) nb_spe <- length(unique(data[, spe])) nb_col <- ncol(data_num) - nb_spe + 1 data_num <- data_num[, nb_col:ncol(data_num)] #Presence of zeros in the data mat_corr <- function(data) { cor(data) } p_mat <- function(data) { ggcorrplot::cor_pmat(data) } # compute a matrix of correlation p-values graph_corr <- function(data_num) { graph <- ggcorrplot::ggcorrplot(mat_corr(data_num), method = "circle", p.mat = p_mat(data_num), #barring the no significant coefficient ggtheme = ggplot2::theme_gray, colors = c("#00AFBB", "#E7B800", "#FC4E07")) ggplot2::ggsave("0_pb.png", graph) } ##Med and disp med <- graph_median(data, var = colvar) disp <- dispersion(data, var = colvar, var2 = colspe) med_disp(med = med, disp = disp) ##O problem graph_corr(data_num)