Mercurial > repos > ecology > ecology_stat_presence_abs
view graph_pres_abs_abund.r @ 0:e5552099d0e3 draft
"planemo upload for repository https://github.com/Marie59/Data_explo_tools commit 2f883743403105d9cac6d267496d985100da3958"
author | ecology |
---|---|
date | Tue, 27 Jul 2021 16:57:02 +0000 |
parents | |
children |
line wrap: on
line source
#Rscript ######################################################### ## Presence abscence and abundance in environment ## ######################################################### #####Packages : ggplot2 # vegan #####Load arguments args <- commandArgs(trailingOnly = TRUE) if (length(args) < 5) { stop("This tool needs at least 5 arguments") }else{ table <- args[1] hr <- args[2] abundance <- as.logical(args[3]) presabs <- as.logical(args[4]) rarefaction <- as.logical(args[5]) lat <- as.numeric(args[6]) long <- as.numeric(args[7]) ind <- as.character(args[8]) loc <- as.numeric(args[9]) num <- as.character(args[10]) spe <- as.numeric(args[11]) abond <- as.numeric(args[12]) } if (hr == "false") { hr <- FALSE }else{ hr <- TRUE } #####Import data data <- read.table(table, sep = "\t", dec = ".", header = hr, fill = TRUE, encoding = "UTF-8") if (abundance) { collat <- colnames(data)[lat] collong <- colnames(data)[long] } if (presabs) { colloc <- colnames(data)[loc] } if (presabs | rarefaction | abundance) { colabond <- colnames(data)[abond] colspe <- colnames(data)[spe] data <- data[grep("^$", data[, colspe], invert = TRUE), ] } #####Your analysis ####The abundance in the environment#### ##Representation of the environment## ## Mapping graph_map <- function(data, collong, collat, colabond, ind, colspe) { cat("\nCoordinates range\n\nLatitude from ", min(data[, collat], na.rm = TRUE), " to ", max(data[, collat], na.rm = TRUE), "\nLongitude from ", min(data[, collong], na.rm = TRUE), " to ", max(data[, collong], na.rm = TRUE), file = "Data_abund.txt", fill = 1, append = TRUE) if (mult0) { mappy <- ggplot2::ggplot(data, ggplot2::aes_string(x = collong, y = collat, cex = colabond, color = colspe)) + ggplot2::geom_point() + ggplot2::ggtitle(paste("Abundance of", ind, "in the environment")) + ggplot2::xlab("Longitude") + ggplot2::ylab("Latitude") + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust = 1), legend.text = ggplot2::element_text(size = 8)) + ggplot2::guides(cex = ggplot2::guide_legend(reverse = TRUE)) }else{ mappy <- ggplot2::ggplot(data, ggplot2::aes_string(x = collong, y = collat, cex = colabond, color = colabond)) + ggplot2::geom_point() + ggplot2::ggtitle(paste("Abundance of", ind, "in the environment")) + ggplot2::xlab("Longitude") + ggplot2::ylab("Latitude") + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust = 1), legend.text = ggplot2::element_text(size = 8)) + ggplot2::guides(cex = ggplot2::guide_legend(reverse = TRUE)) } ggplot2::ggsave("mappy.png", mappy, width = 20, height = 9, units = "cm") } ####Presence absence abundance#### ## Histogram graph_hist <- function(data, col1, col2, col3) { cat("\nLocations\n", unique(data[, col1]), file = "Locations.txt", fill = 1, append = TRUE) if (mult1) { for (loc in unique(data[, col1])) { data_cut <- data[data[, col1] == loc, ] data_cut <- data_cut[data_cut[, col3] > 0, ] if (length(unique(data_cut[, col2])) <= 40) { top <- nrow(data_cut) var <- nchar(as.character(round(top * 0.1, digits = 0))) step <- round(top * 0.1, digits = ifelse(var == 1, 1, -var + 1)) graph <- ggplot2::ggplot(data_cut) + ggplot2::geom_bar(ggplot2::aes_string(x = col1, fill = col2)) + ggplot2::scale_y_continuous(breaks = seq(from = 0, to = top, by = step)) + ggplot2::theme(plot.title = ggplot2::element_text(color = "black", size = 12, face = "bold")) + ggplot2::ggtitle("Number of presence") ggplot2::ggsave(paste("number_in_", loc, ".png"), graph) }else{ cat(paste0("\n", loc, " had more than 40 species and plot isn't readable please select a higher taxon level or cut your data")) } } }else{ top <- nrow(data) var <- nchar(as.character(round(top * 0.1, digits = 0))) step <- round(top * 0.1, digits = ifelse(var == 1, 1, -var + 1)) graph <- ggplot2::ggplot(data) + ggplot2::geom_bar(ggplot2::aes_string(x = col1, fill = col2)) + ggplot2::scale_y_continuous(breaks = seq(from = 0, to = top, by = step)) + ggplot2::theme(plot.title = ggplot2::element_text(color = "black", size = 12, face = "bold")) + ggplot2::ggtitle("Number of individuals") ggplot2::ggsave("number.png", graph) } } rare <- function(data, spe, abond, rare, num) { # Put the data in form new_data <- as.data.frame(data[, spe]) colnames(new_data) <- c("Species") new_data$total <- data[, abond] new_data$rarefaction <- as.integer(rare) end <- length(unique(new_data$Species)) out <- vegan::rarecurve(new_data[, 2:3], step = 10, sample = rarefy_sample, label = FALSE) names(out) <- paste(unique(new_data$Species), sep = "") # Coerce data into "long" form. protox <- mapply(FUN = function(x, y) { mydf <- as.data.frame(x) colnames(mydf) <- "value" mydf$species <- y mydf$subsample <- attr(x, "Subsample") mydf <- na.omit(mydf) mydf }, x = out, y = as.list(names(out)), SIMPLIFY = FALSE) xy <- do.call(rbind, protox) rownames(xy) <- NULL # pretty # Plot. if (mult2) { for (spe in unique(data[, spe])) { xy_cut <- xy[xy$species == spe, ] top <- max(xy_cut$subsample) var <- nchar(as.character(round(top * 0.1, digits = 0))) step <- round(top * 0.1, digits = ifelse(var == 1, 1, -var + 1)) courbe <- ggplot2::ggplot(xy_cut, ggplot2::aes(x = subsample, y = value)) + ggplot2::theme_gray() + ggplot2::geom_line(size = 1) + ggplot2::scale_x_continuous(breaks = seq(from = 0, to = top, by = step)) + ggplot2::xlab("Abundance") + ggplot2::ylab("Value") + ggplot2::ggtitle("rarefaction curve") ggplot2::ggsave(paste("rarefaction_of_", spe, ".png"), courbe) } }else{ top <- max(xy$subsample) var <- nchar(as.character(round(top * 0.1, digits = 0))) step <- round(top * 0.1, digits = ifelse(var == 1, 1, -var + 1)) courbe <- ggplot2::ggplot(xy, ggplot2::aes(x = subsample, y = value, color = species)) + ggplot2::theme_gray() + ggplot2::geom_line(size = 1) + ggplot2::scale_x_continuous(breaks = seq(from = 0, to = top, by = step)) + ggplot2::xlab("Subsample") + ggplot2::ylab("Value") + ggplot2::ggtitle("rarefaction curves") ggplot2::ggsave("rarefaction.png", courbe) } } if (abundance) { #Maps mult0 <- ifelse(length(unique(data[, colspe])) > 10, FALSE, TRUE) graph_map(data, collong = collong, collat = collat, colabond = colabond, ind = ind, colspe = colspe) } if (presabs) { #Presence absence count mult1 <- ifelse(length(unique(data[, colloc])) <= 10, FALSE, TRUE) graph_hist(data, col1 = colloc, col2 = colspe, col3 = colabond) } if (rarefaction) { #rarefaction #### rarefaction indice #### rarefy_sample <- as.numeric(num) ## Calcul de la rarefaction rarefaction <- vegan::rarefy(data[, abond], rarefy_sample) write.table(rarefaction, "rare.tabular") mult2 <- ifelse(length(unique(data[, colspe])) <= 30, FALSE, TRUE) rare(data, spe = colspe, abond = colabond, rare = rarefaction, num = rarefy_sample) }