Mercurial > repos > ecology > pampa_communitymetrics
view FunctExeCalcCommIndexesGalaxy.r @ 7:c67ece97d4b1 draft default tip
"planemo upload for repository https://github.com/ColineRoyaux/PAMPA-Galaxy commit 65ab5b6fe84871db0fe18244d805cea19a44e830"
author | ecology |
---|---|
date | Sat, 26 Jun 2021 07:19:51 +0000 |
parents | 2cd0a5a321c2 |
children |
line wrap: on
line source
#Rscript ##################################################################################################################### ##################################################################################################################### ################################# Calculate community indexes from observation data ################################# ##################################################################################################################### ##################################################################################################################### ###################### Packages R suppressMessages(library(tidyr)) ###################### Load arguments and declaring variables args <- commandArgs(trailingOnly = TRUE) if (length(args) < 4) { stop("At least one argument must be supplied, an input dataset file (.tabular).", call. = FALSE) # if no args -> error and exit1 } else { import_data <- args[1] ###### Nom du fichier importé avec son extension / file name imported with the file type ".filetype" index <- args[2] ###### List of selected metrics to calculate source(args[3]) ###### Import functions } #### d_ata must be a dataframe with at least 3 variables : unitobs representing location and year ("observation.unit"), species code ("species.code") and abundance ("number") #Import des données / Import data obs <- read.table(import_data, sep = "\t", dec = ".", header = TRUE, encoding = "UTF-8") # obs[obs == -999] <- NA factors <- fact_det_f(obs = obs) obs_type <- def_typeobs_f(obs = obs) obs <- create_unitobs(data = obs) vars_data <- c("observation.unit", "species.code", "number") err_msg_data <- "The input dataset doesn't have the right format. It need to have at least the following 3 variables :\n- observation.unit (or location and year)\n- species.code\n- number\n" check_file(obs, err_msg_data, vars_data, 3) #################################################################################################### ################# create community metrics table ## Function : calc_biodiv_f ####################### #################################################################################################### ######################################################################################################################## calc_biodiv_f <- function(d_ata, unitobs = "observation.unit", code_species = "species.code", nombres = "number", indices = index) { ## Purpose: compute biodiversity indexes ## ---------------------------------------------------------------------- ## Arguments: d_ata : input observation file ## unitobs : name of column observation unit ## code_species : name of species column ## nombres : name of abundance column ## indices : list of indexes to compute ## ---------------------------------------------------------------------- ## Author: Yves Reecht, Date: 29 oct. 2010, 08:58 modified by Coline ROYAUX in june 2020 ## Supress lines that doesn't represent a species : notspline <- grep("(sp\\.)$|([1-9])$|^(Absencemacrofaune)$|^(NoID)$|^(Acrobranc)$|^(Acrodigit)$|^(Acroencr)$|^(Acrosubm)$|^(Acrotabu)$|^(Adredure)$|^(Adremoll)$|^(Algaturf)$|^(Balimona)$|^(Corablan)$|^(CoradurV)$|^(Coraenal)$|^(Coramor1)$|^(Coramor2)$|^(Coramou)$|^( Dallcora)$|^(Debrcora)$|^(Debris)$|^(Hare)$|^(HexaChar)$|^(MuraCong)$|^(Nacrbran)$|^(Nacrcham)$|^(Nacrencr)$|^(Nacrfoli)$|^(Nacrmass)$|^(Nacrsubm)$|^(Recrcora)$|^(Roche)$|^(Sable)$|^(Vase)$", d_ata[, code_species], value = FALSE) if (length(notspline) != 0) { d_ata <- d_ata[-notspline, ] } ## Suppress unused factor levels : d_ata <- .GlobalEnv$drop_levels_f(df = d_ata) ## aggregation of data if not already done : if (nrow(d_ata) > nrow(expand.grid(unique(d_ata[, unitobs]), unique(d_ata[, code_species])))) { d_ata <- agregations_generic_f(d_ata = d_ata, metrics = nombres, factors = c(unitobs, code_species), list_fact = NULL) } df_biodiv <- as.data.frame(as.table(tapply(d_ata[, nombres], d_ata[, unitobs], sum, na.rm = TRUE))) colnames(df_biodiv) <- c(unitobs, nombres) ## ################################################## ## species richness : d_ata$presence_absence <- .GlobalEnv$pres_abs_f(nombres = d_ata[, nombres], logical = FALSE) df_biodiv$species_richness <- as.vector(tapply(d_ata$presence_absence, d_ata[, unitobs], sum, na.rm = TRUE), "integer") ## ... as.vector to avoid the class "array". ## ################################################## ## Simpson, Shannon indexes and derivatives : mat_nb <- tapply(d_ata[, nombres], # Matrix of individual count /species/unitobs. list(d_ata[, unitobs], d_ata[, code_species]), sum, na.rm = TRUE) mat_nb[is.na(mat_nb)] <- 0 # Vrais zéros ## each species individual proportion in the dataset : prop_indiv <- sweep(mat_nb, 1, apply(mat_nb, 1, sum, na.rm = TRUE), # individual count / unitobs ; equiv df_biodiv$nombre. FUN = "/") ## Simpson indexes : df_biodiv$simpson <- apply(prop_indiv^2, 1, sum, na.rm = TRUE) if (any(is.element(c("all", "simpson.l"), indices))) { df_biodiv$simpson_l <- 1 - df_biodiv$simpson } ## Shannon index : df_biodiv$shannon <- -1 * apply(prop_indiv * log(prop_indiv), 1, sum, na.rm = TRUE) ## Pielou index : if (any(is.element(c("all", "pielou"), indices))) { df_biodiv$pielou <- df_biodiv$shannon / log(df_biodiv$species_richness) } ## Hill index : if (any(is.element(c("all", "hill"), indices))) { df_biodiv$hill <- (1 - df_biodiv$simpson) / exp(df_biodiv$shannon) # equiv df_biodiv$l.simpson / exp(df_biodiv$shannon) } return(df_biodiv) } ################# Analysis res <- calc_numbers_f(obs, obs_type = obs_type, factors = factors, nb_name = "number") table_comm_indexes <- calc_biodiv_f(res, unitobs = "observation.unit", code_species = "species.code", nombres = "number", indices = index) table_comm_indexes <- create_year_location(table_comm_indexes) #Save dataframe in a tabular format filename_comm <- "TabCommunityIndexes.tabular" write.table(table_comm_indexes, filename_comm, row.names = FALSE, quote = FALSE, sep = "\t", dec = ".", fileEncoding = "UTF-8") cat(paste("\nWrite table with Community indexes. \n--> \"", filename_comm, "\"\n", sep = ""))