Mercurial > repos > ecology > pampa_plotglm
view FunctExePlotGLMGalaxy.r @ 2:c448e026f122 draft default tip
"planemo upload for repository https://github.com/ColineRoyaux/PAMPA-Galaxy commit 65ab5b6fe84871db0fe18244d805cea19a44e830"
author | ecology |
---|---|
date | Sat, 26 Jun 2021 07:20:47 +0000 |
parents | 3ab852a7ff53 |
children |
line wrap: on
line source
#Rscript ##################################################################################################################### ##################################################################################################################### ###################################### Create a plot from your community data ####################################### ##################################################################################################################### ##################################################################################################################### ###################### Packages suppressMessages(library(ggplot2)) suppressMessages(library(boot)) ###################### Load arguments and declaring variables args <- commandArgs(trailingOnly = TRUE) if (length(args) < 2) { stop("At least 3 arguments must be supplied input dataset file with GLM results (.tabular)", call. = FALSE) #if no args -> error and exit1 } else { import_data <- args[1] ###### file name : glm results table data_tab <- args[2] ###### file name : Metrics table unitobs_tab <- args[3] ###### file name : Unitobs table source(args[4]) ###### Import functions } #Import data glmtable <- read.table(import_data, sep = "\t", dec = ".", header = TRUE, encoding = "UTF-8") # datatable <- read.table(data_tab, sep = "\t", dec = ".", header = TRUE, encoding = "UTF-8") # unitobs <- read.table(unitobs_tab, sep = "\t", dec = ".", header = TRUE, encoding = "UTF-8") # #Check files vars_data1 <- c("analysis", "Interest.var", "distribution") err_msg_data1 <- "The input GLM results dataset doesn't have the right format. It needs to have at least the following 3 fields :\n- analysis\n- Interest.var\n- distribution\n" check_file(glmtable, err_msg_data1, vars_data1, 4) if (length(grep("[0-2][0|9][0-9][0-9].[Estimate|Pvalue]", colnames(glmtable))) == 0) { stop("The input GLM results dataset doesn't have the right format or informations. This tool is to represent temporal trends, if your GLM doesn't take the year variable as a fixed effect this tool is not proper to make any representation of it. It needs to have at least estimates and p-value for every year from your time series GLM as columns with name formated as : yyyy Estimate (example : 2020 Estimate) and yyyy Pvalue (example : 2020 Pvalue).") } if (length(grep("[0-2][0|9][0-9][0-9].IC_[up|inf]", colnames(glmtable))) == 0) { assess_ic <- FALSE }else{ assess_ic <- TRUE } metric <- as.character(glmtable[1, "Interest.var"]) vars_data2 <- c("observation.unit", "location", metric) err_msg_data2 <- "The input metrics dataset doesn't have the right format. It needs to have at least the following 3 fields :\n- observation.unit\n- location\n- the name of the interest metric\n" check_file(datatable, err_msg_data2, vars_data2, 4) vars_data3 <- c("observation.unit", "year") err_msg_data3 <- "The input unitobs dataset doesn't have the right format. It needs to have at least the following 2 fields :\n- observation.unit\n- year\n" check_file(unitobs, err_msg_data3, vars_data3, 2) if (length(grep("[0-2][0|9][0-9][0-9]", unitobs$year)) == 0) { stop("The year column in the input unitobs dataset doesn't have the right format. Years must be fully written as : yyyy (example : 2020).") } if (all(is.na(match(datatable[, "observation.unit"], unitobs[, "observation.unit"])))) { stop("Observation units doesn't match in the inputs metrics dataset and unitobs dataset") } #################################################################################################################### ######################### Creating plot from time series GLM data ## Function : ggplot_glm ######################### #################################################################################################################### ggplot_glm <- function(glmtable, datatable, unitobs, metric = metric, sp, description = TRUE, trend_on_graph = TRUE, assess_ic = TRUE) { ## Purpose: Creating plot from time series GLM data ## ---------------------------------------------------------------------- ## Arguments: glmtable : GLM(s) results table ## datatable : Metrics table ## unitobs : Unitobs table ## metric : Interest variable in GLM(s) ## sp : name of processed GLM ## description : Two graphs ? ## trend_on_graph : Write global trend of the time series on graph ? ## assess_ic : Assess confidence intervals ? ## ---------------------------------------------------------------------- ## Author: Coline ROYAUX 13 october 2020 s_signif <- 0.05 ## threshold when pvalue is considered significant distrib <- as.character(glmtable[1, "distribution"]) ## extract GLM distribution col <- c("observation.unit", "location", metric) ## names of needed columns in metrics table to construct the 2nd panel of the graph if (colnames(glmtable)[length(glmtable)] == "separation") { ## if GLM is a community analysis cut <- as.character(glmtable[1, "separation"]) if (cut != "None") { ## if there is plural GLM analysis performed if (! is.element(as.character(cut), colnames(unitobs))) { stop("The input unitobs dataset doesn't have the right format. If plural GLM analysis have been performed it needs to have the field used as separation factor.") } datatable <- cbind(datatable[, col], unitobs[match(datatable[, "observation.unit"], unitobs[, "observation.unit"]), c("year", cut)]) ## extracting 'year' and analysis separation factor columns from unitobs table to merge with metrics table /// Matching lines with 'observation.unit' column colnames(datatable) <- c(col, "year", cut) }else{ datatable <- cbind(datatable[, col], unitobs[match(datatable[, "observation.unit"], unitobs[, "observation.unit"]), "year"]) ## extracting 'year' column from unitobs table to merge with metrics table /// Matching lines with 'observation.unit' column colnames(datatable) <- c(col, "year") } }else{ ## GLM is a population analysis cut <- "species.code" if (! is.element("species.code", colnames(datatable))) { stop("The input metrics dataset or the GLM results dataset doesn't have the right format. If the GLM is a population analysis, the field species.code needs to be informed in the metrics dataset. If the GLM is a community analysis the field separation (None if only one analysis and name of the separation factor if several analysis) needs to be informed in the last column of the GLM results dataset.") } col <- c(col, cut) datatable <- cbind(datatable[, col], unitobs[match(datatable[, "observation.unit"], unitobs[, "observation.unit"]), "year"]) ## extracting 'year' column from unitobs table to merge with metrics table /// Matching lines with 'observation.unit' column colnames(datatable) <- c(col, "year") } ##vpan vector of names of the two panels in the ggplot switch(as.character(metric), "number" = vpan <- c("Abundance variation", "Raw abundance"), "presence_absence" = vpan <- c("Presence-absence variation", "% presence in location"), vpan <- c(paste(metric, " variation"), paste("Mean ", metric))) ##Cut table for 1 analysis glmtab <- glmtable[glmtable[, "analysis"] == sp, ] glmtab <- glmtab[, grep("FALSE", is.na(glmtab[1, ]))] ## Supress columns with NA only ## specification of temporal variable necessary for the analyses an <- as.numeric(unlist(strsplit(gsub("X", "", paste(colnames(glmtab)[grep("[0-2][0|9][0-9][0-9].Estimate", colnames(glmtab))], collapse = " ")), split = ".Estimate"))) ## Extract list of years studied in the GLM year <- sort(c(min(an) - 1, an)) ## Add the first level, "reference" in the GLM nbans <- length(year) pasdetemps <- nbans - 1 ##### Table 1 coefan <- unlist(lapply(an, FUN = function(x) { if (length(glmtab[glmtab[, 1] == sp, grep(paste0("X", x, ".Estimate"), colnames(glmtab))]) > 0) { glmtab[glmtab[, 1] == sp, grep(paste0("X", x, ".Estimate"), colnames(glmtab))] }else{ NA } })) ## extract estimates for each years to contruct graph 1 ic_inf <- unlist(lapply(an, FUN = function(x) { if (length(glmtab[glmtab[, 1] == sp, grep(paste0("X", x, ".IC_inf"), colnames(glmtab))]) > 0) { glmtab[glmtab[, 1] == sp, grep(paste0("X", x, ".IC_inf"), colnames(glmtab))] }else{ NA } })) ic_up <- unlist(lapply(an, FUN = function(x) { if (length(glmtab[glmtab[, 1] == sp, grep(paste0("X", x, ".IC_up"), colnames(glmtab))]) > 0) { glmtab[glmtab[, 1] == sp, grep(paste0("X", x, ".IC_up"), colnames(glmtab))] }else{ NA } })) switch(distrib, ## Applying the reciprocal of the link function to coefficients and confidence intervals depending on distribution law "poisson" = { coefyear <- c(1, exp(as.numeric(coefan))) ## link function : log if (assess_ic) { ic_inf_sim <- c(1, exp(as.numeric(ic_inf))) ic_sup_sim <- c(1, exp(as.numeric(ic_up))) } else { ic_inf_sim <- NA ic_sup_sim <- NA }}, "quasipoisson" = { coefyear <- c(1, exp(as.numeric(coefan))) ## link function : log if (assess_ic) { ic_inf_sim <- c(1, exp(as.numeric(ic_inf))) ic_sup_sim <- c(1, exp(as.numeric(ic_up))) } else { ic_inf_sim <- NA ic_sup_sim <- NA }}, "inverse.gaussian" = { coefyear <- c(0, as.numeric(coefan) ^ (- 1 / 2)) ## link function : x^ - 2 if (assess_ic) { ic_inf_sim <- c(0, as.numeric(ic_inf) ^ (- 1 / 2)) ic_sup_sim <- c(0, as.numeric(ic_up) ^ (- 1 / 2)) } else { ic_inf_sim <- NA ic_sup_sim <- NA }}, "binomial" = { coefyear <- c(1, boot::inv.logit(as.numeric(coefan))) ## link function : logit if (assess_ic) { ic_inf_sim <- c(1, boot::inv.logit(as.numeric(ic_inf))) ic_sup_sim <- c(1, boot::inv.logit(as.numeric(ic_up))) } else { ic_inf_sim <- NA ic_sup_sim <- NA }}, "quasibinomial" = { coefyear <- c(1, boot::inv.logit(as.numeric(coefan))) ## link function : logit if (assess_ic) { ic_inf_sim <- c(1, boot::inv.logit(as.numeric(ic_inf))) ic_sup_sim <- c(1, boot::inv.logit(as.numeric(ic_up))) } else { ic_inf_sim <- NA ic_sup_sim <- NA }}, "Gamma" = { coefyear <- c(1, as.numeric(coefan) ^ (- 1)) ## link function : -x^ - 1 if (assess_ic) { ic_inf_sim <- c(1, as.numeric(ic_inf) ^ (- 1)) ic_sup_sim <- c(1, as.numeric(ic_up) ^ (- 1)) } else { ic_inf_sim <- NA ic_sup_sim <- NA }} , { coefyear <- c(0, as.numeric(coefan)) if (assess_ic) { ic_inf_sim <- c(0, as.numeric(ic_inf)) ic_sup_sim <- c(0, as.numeric(ic_up)) } else { ic_inf_sim <- NA ic_sup_sim <- NA }}) pval <- c(1, unlist(lapply(an, FUN = function(x) { if (length(glmtab[glmtab[, 1] == sp, grep(paste0("X", x, ".Pvalue"), colnames(glmtab))]) > 0) { glmtab[glmtab[, 1] == sp, grep(paste0("X", x, ".Pvalue"), colnames(glmtab))] }else{ NA } }))) ## extract p value for each year tab1 <- data.frame(year, val = coefyear, ## table for the graphical output 1 ll = unlist(ic_inf_sim), ul = unlist(ic_sup_sim), catPoint = ifelse(pval < s_signif, "significatif", NA), pval, courbe = vpan[1], panel = vpan[1]) ## cleaning of wrong or biaised measures of the confidence interval if (assess_ic) { tab1$ul <- ifelse(tab1$ul == Inf, NA, tab1$ul) tab1$ul <- ifelse(tab1$ul > 1.000000e+20, NA, tab1$ul) tab1$val <- ifelse(tab1$val > 1.000000e+20, 1.000000e+20, tab1$val) } coefancontinu <- as.numeric(as.character(glmtab[glmtab[, 1] == sp, grep("year.Estimate", colnames(glmtab))])) ## tendency of population evolution on the studied period = regression coefficient of the variable year as a continuous variable in the GLM switch(distrib, ## Applying the reciprocal of the link function to coefficients and confidence intervals depending on distribution law "poisson" = { trend <- round(exp(as.numeric(coefancontinu)), 3) ## link function : log pourcentage <- round((exp(as.numeric(coefancontinu) * as.numeric(pasdetemps)) - 1) * 100, 2) }, "quasipoisson" = { trend <- round(exp(as.numeric(coefancontinu)), 3) ## link function : log pourcentage <- round((exp(as.numeric(coefancontinu) * as.numeric(pasdetemps)) - 1) * 100, 2) }, "inverse.gaussian" = { trend <- round(as.numeric(coefancontinu) ^ (- 1 / 2), 3) ## link function : x^ - 2 pourcentage <- round((((as.numeric(coefancontinu) * as.numeric(pasdetemps)) ^ (- 1 / 2)) - 1) * 100, 2) }, "binomial" = { trend <- round(boot::inv.logit(as.numeric(coefancontinu)), 3) ## link function : logit pourcentage <- round((boot::inv.logit(as.numeric(coefancontinu) * as.numeric(pasdetemps)) - 1) * 100, 2) }, "quasibinomial" = { trend <- round(boot::inv.logit(as.numeric(coefancontinu)), 3) ## link function : logit pourcentage <- round((boot::inv.logit(as.numeric(coefancontinu) * as.numeric(pasdetemps)) - 1) * 100, 2) }, "Gamma" = { trend <- round(as.numeric(coefancontinu) ^ (- 1), 3) ## link function : -x^ - 1 pourcentage <- round((((as.numeric(coefancontinu) * as.numeric(pasdetemps)) ^ (- 1)) - 1) * 100, 2) } , { trend <- round(as.numeric(coefancontinu), 3) pourcentage <- round((((as.numeric(coefancontinu) * as.numeric(pasdetemps))) - 1) * 100, 2) }) pval <- as.numeric(as.character(glmtab[glmtab[, 1] == sp, grep("year.Pvalue", colnames(glmtab))])) ## Extract p value ## table for global trend on the whole time series tab1t <- NULL if (length(pval) > 0) { tab1t <- data.frame(Est = trend, pourcent = pourcentage, signif = pval < s_signif, pval) } ##### Table 2 if (sp == "global") { ## prepare metrics table to extract variables used in graph 2 datatablecut <- datatable[grep("FALSE", is.na(datatable[, as.character(metric)])), ] }else{ datatablecut <- datatable[datatable[, as.character(cut)] == sp, ] datatablecut <- datatablecut[grep("FALSE", is.na(datatablecut[, as.character(metric)])), ] } switch(as.character(metric), ## Different value represented graph 2 depending on the nature of the metric "number" = { valplot <- lapply(sort(year), FUN = function(x) { sum(na.omit(as.numeric(subset(datatablecut, year == x)[, as.character(metric)]))) }) }, ## sum if abundance "presence_absence" = { nb_loc <- lapply(sort(year), FUN = function(x) { length(unique(subset(datatablecut, year == x)[, "location"])) }) ## number of plots per year nb_loc_presence <- lapply(sort(year), FUN = function(x) { length(unique(subset(datatablecut[datatablecut[, metric] > 0, ], year == x)[, "location"])) }) ## number of plots where the species were observed valplot <- (na.omit(as.numeric(nb_loc_presence)) / na.omit(as.numeric(nb_loc))) * 100 } ## % of presence in observered plots if presence / absence , { valplot <- lapply(sort(year), FUN = function(x) { mean(na.omit(as.numeric(subset(datatablecut, year == x)[, as.character(metric)]))) }) } ## mean if any other metric ) tab2 <- data.frame(year, val = round(as.numeric(valplot), 2), ll = NA, ul = NA, catPoint = NA, pval = NA, courbe = vpan[2], panel = vpan[2]) ## Creating ggplots dgg <- tab1 figname <- paste(sp, ".png", sep = "") ## coord for horizontal lines in graphs hline_data1 <- data.frame(z = tab1$val[1], panel = c(vpan[1]), couleur = "var estimates", type = "var estimates") hline_data3 <- data.frame(z = 0, panel = vpan[2], couleur = "seuil", type = "seuil") hline_data <- rbind(hline_data1, hline_data3) titre <- paste(sp) ## text for the population evolution trend pasdetemps <- max(dgg$year) - min(dgg$year) + 1 if (! is.null(tab1t)) { if (assess_ic) { txt_pente1 <- paste("Global trend : ", tab1t$Est, ifelse(tab1t$signif, " *", ""), ifelse(tab1t$signif, paste("\n", ifelse(tab1t$pourcent > 0, "+ ", "- "), abs(tab1t$pourcent), " % in ", pasdetemps, " years", sep = ""), ""), sep = "") }else{ txt_pente1 <- ifelse(tab1t$signif, paste("\n", ifelse(tab1t$pourcent > 0, "+ ", "- "), abs(tab1t$pourcent), " % in ", pasdetemps, " years", sep = ""), "") } }else{ trend_on_graph <- FALSE } ## table of the text for the population evolution trend tab_text_pent <- data.frame(y = c(max(c(dgg$val, dgg$ul), na.rm = TRUE) * .9), x = median(dgg$year), txt = ifelse(trend_on_graph, c(txt_pente1), ""), courbe = c(vpan[1]), panel = c(vpan[1])) dgg <- rbind(tab1, tab2) ## colors for plots vec_col_point <- c("#ffffff", "#eeb40f", "#ee0f59") names(vec_col_point) <- c("significatif", "infSeuil", "0") vec_col_courbe <- c("#3c47e0", "#5b754d", "#55bb1d", "#973ce0") names(vec_col_courbe) <- c(vpan[1], "loc", "presence", vpan[2]) vec_col_hline <- c("#ffffff", "#e76060") names(vec_col_hline) <- c("var estimates", "seuil") col <- c(vec_col_point, vec_col_courbe, vec_col_hline) names(col) <- c(names(vec_col_point), names(vec_col_courbe), names(vec_col_hline)) p <- ggplot2::ggplot(data = dgg, mapping = ggplot2::aes_string(x = "year", y = "val")) ## Titles and scales p <- p + facet_grid(panel ~ ., scale = "free") + theme(legend.position = "none", panel.grid.minor = element_blank(), panel.grid.major.y = element_blank(), axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) + ylab("") + xlab("year") + ggtitle(titre) + scale_colour_manual(values = col, name = "", breaks = names(col)) + scale_x_continuous(breaks = min(dgg$year):max(dgg$year)) p <- p + ggplot2::geom_hline(data = hline_data, mapping = ggplot2::aes_string(yintercept = "z", colour = "couleur", linetype = "type"), alpha = 1, size = 1.2) if (assess_ic) { ############# ONLY FOR THE CONFIDENCE INTERVAL p <- p + ggplot2::geom_ribbon(mapping = ggplot2::aes_string(ymin = "ll", ymax = "ul"), fill = col[vpan[1]], alpha = .2) p <- p + ggplot2::geom_pointrange(mapping = ggplot2::aes_string(y = "val", ymin = "ll", ymax = "ul"), fill = col[vpan[1]], alpha = .2) } p <- p + ggplot2::geom_line(mapping = ggplot2::aes_string(colour = "courbe"), size = 1.5) p <- p + ggplot2::geom_point(mapping = ggplot2::aes_string(colour = "courbe"), size = 3) alph <- ifelse(!is.na(dgg$catPoint), 1, 0) p <- p + ggplot2::geom_point(mapping = ggplot2::aes_string(colour = "catPoint", alpha = alph), size = 2) p <- p + ggplot2::geom_text(data = tab_text_pent, mapping = ggplot2::aes_string("x", "y", label = "txt"), parse = FALSE, color = col[vpan[1]], fontface = 2, size = 4) ggplot2::ggsave(figname, p, width = 16, height = 15, units = "cm") } ############################################################################################################ fin fonction graphique / end of function for graphical output ################# Analysis for (sp in glmtable[, 1]) { if (!all(is.na(glmtable[glmtable[, 1] == sp, 4:(length(glmtable) - 1)]))) { ##ignore lines with only NA ggplot_glm(glmtable = glmtable, datatable = datatable, unitobs = unitobs, metric = metric, sp = sp, description = TRUE, trend_on_graph = TRUE, assess_ic = assess_ic) } } sink("stdout.txt", split = TRUE)