Mercurial > repos > ecology > srs_pca
comparison prosail-master/R/Lib_PROSAIL_HybridInversion.R @ 0:0931c98270c9 draft
planemo upload for repository https://github.com/Marie59/Sentinel_2A/srs_tools commit b32737c1642aa02cc672534e42c5cb4abe0cd3e7
| author | ecology |
|---|---|
| date | Mon, 09 Jan 2023 13:38:09 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:0931c98270c9 |
|---|---|
| 1 # ============================================================================= = | |
| 2 # prosail | |
| 3 # Lib_PROSAIL_HybridInversion.R | |
| 4 # ============================================================================= = | |
| 5 # PROGRAMMERS: | |
| 6 # Jean-Baptiste FERET <jb.feret@teledetection.fr> | |
| 7 # Florian de BOISSIEU <fdeboiss@gmail.com> | |
| 8 # Copyright 2019 / 11 Jean-Baptiste FERET | |
| 9 # ============================================================================= = | |
| 10 # This Library includes functions dedicated to PROSAIL inversion using hybrid | |
| 11 # approach based on SVM regression | |
| 12 # ============================================================================= = | |
| 13 | |
| 14 | |
| 15 #" This function applies SVR model on raster data in order to estimate | |
| 16 #" vegetation biophysical properties | |
| 17 #" | |
| 18 #" @param raster_path character. path for a raster file | |
| 19 #" @param hybridmodel list. hybrid models produced from train_prosail_inversion | |
| 20 #" each element of the list corresponds to a set of hybrid models for a vegetation parameter | |
| 21 #" @param pathout character. path for directory where results are written | |
| 22 #" @param selectedbands list. list of spectral bands to be selected from raster (identified by name of vegetation parameter) | |
| 23 #" @param bandname character. spectral bands corresponding to the raster | |
| 24 #" @param maskraster character. path for binary mask defining ON (1) and OFF (0) pixels in the raster | |
| 25 #" @param multiplyingfactor numeric. multiplying factor used to write reflectance in the raster | |
| 26 #" --> PROSAIL simulates reflectance between 0 and 1, and raster data expected in the same range | |
| 27 #" | |
| 28 #" @return None | |
| 29 #" @importFrom progress progress_bar | |
| 30 #" @importFrom stars read_stars | |
| 31 #" @importFrom raster raster brick blockSize readStart readStop getValues writeStart writeStop writeValues | |
| 32 #" @import rgdal | |
| 33 #" @export | |
| 34 apply_prosail_inversion <- function(raster_path, hybridmodel, pathout, | |
| 35 selectedbands, bandname, | |
| 36 maskraster = FALSE, multiplyingfactor = 10000) { | |
| 37 | |
| 38 # explain which biophysical variables will be computed | |
| 39 bpvar <- names(hybridmodel) | |
| 40 print("The following biophysical variables will be computed") | |
| 41 print(bpvar) | |
| 42 | |
| 43 # get image dimensions | |
| 44 if (attr(rgdal::GDALinfo(raster_path, returnStats = FALSE), "driver") == "ENVI") { | |
| 45 hdr <- read_envi_header(get_hdr_name(raster_path)) | |
| 46 dimsraster <- list("rows" = hdr$lines, "cols" = hdr$samples, "bands" = hdr$bands) | |
| 47 } else { | |
| 48 dimsraster <- dim(read_stars(raster_path)) | |
| 49 dimsraster <- list("rows" = as.numeric(dimsraster[2]), "cols" = as.numeric(dimsraster[1]), "bands" = as.numeric(dimsraster[3])) | |
| 50 } | |
| 51 | |
| 52 # Produce a map for each biophysical property | |
| 53 for (parm in bpvar) { | |
| 54 print(paste("Computing", parm, sep = " ")) | |
| 55 # read by chunk to avoid memory problem | |
| 56 blk <- blockSize(brick(raster_path)) | |
| 57 # reflectance file | |
| 58 r_in <- readStart(brick(raster_path)) | |
| 59 # mask file | |
| 60 r_inmask <- FALSE | |
| 61 if (maskraster == FALSE) { | |
| 62 selectpixels <- "ALL" | |
| 63 } else if (!maskraster == FALSE) { | |
| 64 if (file.exists(maskraster)) { | |
| 65 r_inmask <- readStart(raster(maskraster)) | |
| 66 } else if (!file.exists(maskraster)) { | |
| 67 message("WARNING: Mask file does not exist:") | |
| 68 print(maskraster) | |
| 69 message("Processing all image") | |
| 70 selectpixels <- "ALL" | |
| 71 } | |
| 72 } | |
| 73 # initiate progress bar | |
| 74 pgbarlength <- length(hybridmodel[[parm]]) * blk$n | |
| 75 pb <- progress_bar$new( | |
| 76 format = "Hybrid inversion on raster [:bar] :percent in :elapsedfull, estimated time remaining :eta", | |
| 77 total = pgbarlength, clear = FALSE, width = 100) | |
| 78 | |
| 79 # output files | |
| 80 bpvarpath <- file.path(pathout, paste(basename(raster_path), parm, sep = "_")) | |
| 81 bpvarsdpath <- file.path(pathout, paste(basename(raster_path), parm, "STD", sep = "_")) | |
| 82 r_outmean <- writeStart(raster(raster_path), filename = bpvarpath, format = "ENVI", overwrite = TRUE) | |
| 83 r_outsd <- writeStart(raster(raster_path), filename = bpvarsdpath, format = "ENVI", overwrite = TRUE) | |
| 84 selbands <- match(selectedbands[[parm]], bandname) | |
| 85 | |
| 86 # loop over blocks | |
| 87 for (i in seq_along(blk$row)) { | |
| 88 # read values for block | |
| 89 # format is a matrix with rows the cells values and columns the layers | |
| 90 blockval <- getValues(r_in, row = blk$row[i], nrows = blk$nrows[i]) | |
| 91 fulllength <- dim(blockval)[1] | |
| 92 | |
| 93 if (typeof(r_inmask) == "logical") { | |
| 94 blockval <- blockval[, selbands] | |
| 95 # automatically filter pixels corresponding to negative values | |
| 96 selectpixels <- which(blockval[, 1] > 0) | |
| 97 blockval <- blockval[selectpixels, ] | |
| 98 } else if (typeof(r_inmask) == "S4") { | |
| 99 maskval <- getValues(r_inmask, row = blk$row[i], nrows = blk$nrows[i]) | |
| 100 selectpixels <- which(maskval == 1) | |
| 101 blockval <- blockval[selectpixels, selbands] | |
| 102 } | |
| 103 mean_estimatefull <- NA * vector(length = fulllength) | |
| 104 std_estimatefull <- NA * vector(length = fulllength) | |
| 105 if (length(selectpixels) > 0) { | |
| 106 blockval <- blockval / multiplyingfactor | |
| 107 modelsvr_estimate <- list() | |
| 108 for (modind in 1:seq_along(hybridmodel[[parm]])) { | |
| 109 pb$tick() | |
| 110 modelsvr_estimate[[modind]] <- predict(hybridmodel[[parm]][[modind]], blockval) | |
| 111 } | |
| 112 modelsvr_estimate <- do.call(cbind, modelsvr_estimate) | |
| 113 # final estimated value = mean parm value for all models | |
| 114 mean_estimate <- rowMeans(modelsvr_estimate) | |
| 115 # "uncertainty" = STD value for all models | |
| 116 std_estimate <- rowSds(modelsvr_estimate) | |
| 117 mean_estimatefull[selectpixels] <- mean_estimate | |
| 118 std_estimatefull[selectpixels] <- std_estimate | |
| 119 } else { | |
| 120 for (modind in 1:seq_along(hybridmodel[[parm]])) { | |
| 121 pb$tick() | |
| 122 } | |
| 123 } | |
| 124 r_outmean <- writeValues(r_outmean, mean_estimatefull, blk$row[i], format = "ENVI", overwrite = TRUE) | |
| 125 r_outsd <- writeValues(r_outsd, std_estimatefull, blk$row[i], format = "ENVI", overwrite = TRUE) | |
| 126 } | |
| 127 # close files | |
| 128 r_in <- readStop(r_in) | |
| 129 if (typeof(r_inmask) == "S4") { | |
| 130 r_inmask <- readStop(r_inmask) | |
| 131 } | |
| 132 r_outmean <- writeStop(r_outmean) | |
| 133 r_outsd <- writeStop(r_outsd) | |
| 134 # write biophysical variable name in headers | |
| 135 hdr <- read_envi_header(get_hdr_name(bpvarpath)) | |
| 136 hdr$`band names` <- paste("{", parm, "}", sep = "") | |
| 137 write_envi_header(hdr, get_hdr_name(bpvarpath)) | |
| 138 } | |
| 139 print("processing completed") | |
| 140 return(invisible()) | |
| 141 } | |
| 142 | |
| 143 #" get hdr name from image file name, assuming it is BIL format | |
| 144 #" | |
| 145 #" @param impath path of the image | |
| 146 #" | |
| 147 #" @return corresponding hdr | |
| 148 #" @importFrom tools file_ext file_path_sans_ext | |
| 149 #" @export | |
| 150 get_hdr_name <- function(impath) { | |
| 151 if (tools::file_ext(impath) == "") { | |
| 152 impathhdr <- paste(impath, ".hdr", sep = "") | |
| 153 } else if (tools::file_ext(impath) == "bil") { | |
| 154 impathhdr <- gsub(".bil", ".hdr", impath) | |
| 155 } else if (tools::file_ext(impath) == "zip") { | |
| 156 impathhdr <- gsub(".zip", ".hdr", impath) | |
| 157 } else { | |
| 158 impathhdr <- paste(tools::file_path_sans_ext(impath), ".hdr", sep = "") | |
| 159 } | |
| 160 | |
| 161 if (!file.exists(impathhdr)) { | |
| 162 message("WARNING : COULD NOT FIND hdr FILE") | |
| 163 print(impathhdr) | |
| 164 message("Process may stop") | |
| 165 } | |
| 166 return(impathhdr) | |
| 167 } | |
| 168 | |
| 169 #" This function applies the regression models trained with prosail_hybrid_train | |
| 170 #" | |
| 171 #" @param regressionmodels list. List of regression models produced by prosail_hybrid_train | |
| 172 #" @param refl numeric. LUT of bidirectional reflectances factors used for training | |
| 173 #" | |
| 174 #" @return hybridres list. Estimated values corresponding to refl. Includes | |
| 175 #" - meanestimate = mean value for the ensemble regression model | |
| 176 #" - stdestimate = std value for the ensemble regression model | |
| 177 #" @importFrom stats predict | |
| 178 #" @importFrom matrixStats rowSds | |
| 179 #" @importFrom progress progress_bar | |
| 180 #" @export | |
| 181 | |
| 182 prosail_hybrid_apply <- function(regressionmodels, refl) { | |
| 183 | |
| 184 # make sure refl is right dimensions | |
| 185 refl <- t(refl) | |
| 186 nbfeatures <- regressionmodels[[1]]$dim | |
| 187 if (!ncol(refl) == nbfeatures && nrow(refl) == nbfeatures) { | |
| 188 refl <- t(refl) | |
| 189 } | |
| 190 nbensemble <- length(regressionmodels) | |
| 191 estimatedval <- list() | |
| 192 pb <- progress_bar$new( | |
| 193 format = "Applying SVR models [:bar] :percent in :elapsed", | |
| 194 total = nbensemble, clear = FALSE, width = 100) | |
| 195 for (i in 1:nbensemble) { | |
| 196 pb$tick() | |
| 197 estimatedval[[i]] <- predict(regressionmodels[[i]], refl) | |
| 198 } | |
| 199 estimatedval <- do.call(cbind, estimatedval) | |
| 200 meanestimate <- rowMeans(estimatedval) | |
| 201 stdestimate <- rowSds(estimatedval) | |
| 202 hybridres <- list("meanestimate" = meanestimate, "stdestimate" = stdestimate) | |
| 203 return(hybridres) | |
| 204 } | |
| 205 | |
| 206 #" This function trains a suppot vector regression for a set of variables based on spectral data | |
| 207 #" | |
| 208 #" @param brf_lut numeric. LUT of bidirectional reflectances factors used for training | |
| 209 #" @param inputvar numeric. biophysical parameter corresponding to the reflectance | |
| 210 #" @param figplot Boolean. Set to TRUE if you want a scatterplot | |
| 211 #" @param nbensemble numeric. Number of individual subsets should be generated from brf_lut | |
| 212 #" @param withreplacement Boolean. should subsets be generated with or without replacement? | |
| 213 #" | |
| 214 #" @return modelssvr list. regression models trained for the retrieval of inputvar based on brf_lut | |
| 215 #" @importFrom liquidSVM svmRegression | |
| 216 #" @importFrom stats predict | |
| 217 #" @importFrom progress progress_bar | |
| 218 #" @importFrom graphics par | |
| 219 #" @importFrom expandFunctions reset.warnings | |
| 220 #" @importFrom stringr str_split | |
| 221 #" @importFrom simsalapar tryCatch.W.E | |
| 222 #" @import dplyr | |
| 223 #" @import ggplot2 | |
| 224 # @" @import caret | |
| 225 #" @export | |
| 226 | |
| 227 prosail_hybrid_train <- function(brf_lut, inputvar, figplot = FALSE, nbensemble = 20, withreplacement = FALSE) { | |
| 228 | |
| 229 x <- y <- ymean <- ystdmin <- ystdmax <- NULL | |
| 230 # split the LUT into nbensemble subsets | |
| 231 nbsamples <- length(inputvar) | |
| 232 if (dim(brf_lut)[2] == nbsamples) { | |
| 233 brf_lut <- t(brf_lut) | |
| 234 } | |
| 235 | |
| 236 # if subsets are generated from brf_lut with replacement | |
| 237 if (withreplacement == TRUE) { | |
| 238 subsets <- list() | |
| 239 samples_per_run <- round(nbsamples / nbensemble) | |
| 240 for (run in (1:nbensemble)) { | |
| 241 subsets[[run]] <- sample(seq(1, nbsamples), samples_per_run, replace = TRUE) | |
| 242 } | |
| 243 # if subsets are generated from brf_lut without replacement | |
| 244 } else if (withreplacement == FALSE) { | |
| 245 subsets <- split(sample(seq(1, nbsamples, by = 1)), seq(1, nbensemble, by = 1)) | |
| 246 } | |
| 247 | |
| 248 # run training for each subset | |
| 249 modelssvr <- list() | |
| 250 predictedyall <- list() | |
| 251 tunedmodelyall <- list() | |
| 252 pb <- progress_bar$new( | |
| 253 format = "Training SVR on subsets [:bar] :percent in :elapsed", | |
| 254 total = nbensemble, clear = FALSE, width = 100) | |
| 255 for (i in 1:nbensemble) { | |
| 256 pb$tick() | |
| 257 Sys.sleep(1 / 100) | |
| 258 trainingset <- list() | |
| 259 trainingset$X <- brf_lut[subsets[i][[1]], ] | |
| 260 trainingset$Y <- inputvar[subsets[i][[1]]] | |
| 261 # liquidSVM | |
| 262 r1 <- tryCatch.W.E(tunedmodel <- liquidSVM::svmRegression(trainingset$X, trainingset$Y)) | |
| 263 if (!is.null(r1$warning)) { | |
| 264 msg <- r1$warning$message | |
| 265 valgamma <- str_split(string = msg, pattern = "gamma=")[[1]][2] | |
| 266 vallambda <- str_split(string = msg, pattern = "lambda=")[[1]][2] | |
| 267 if (!is.na(as.numeric(valgamma))) { | |
| 268 message("Adjusting Gamma accordingly") | |
| 269 valgamma <- as.numeric(valgamma) | |
| 270 tunedmodel <- liquidSVM::svmRegression(trainingset$X, trainingset$Y, min_gamma = valgamma) | |
| 271 } | |
| 272 if (!is.na(as.numeric(vallambda))) { | |
| 273 message("Adjusting Lambda accordingly") | |
| 274 vallambda <- as.numeric(vallambda) | |
| 275 tunedmodel <- liquidSVM::svmRegression(trainingset$X, trainingset$Y, min_lambda = vallambda) | |
| 276 } | |
| 277 } | |
| 278 modelssvr[[i]] <- tunedmodel | |
| 279 } | |
| 280 | |
| 281 # if scatterplots needed | |
| 282 if (figplot == TRUE) { | |
| 283 # predict for full brf_lut | |
| 284 for (i in 1:nbensemble) { | |
| 285 tunedmodely <- stats::predict(modelssvr[[i]], brf_lut) | |
| 286 tunedmodelyall <- cbind(tunedmodelyall, matrix(tunedmodely, ncol = 1)) | |
| 287 } | |
| 288 # plot prediction | |
| 289 df <- data.frame(x = rep(1:nbsamples, nbensemble), y = as.numeric(matrix(tunedmodelyall, ncol = 1))) | |
| 290 df_summary <- df %>% | |
| 291 dplyr::group_by(x) %>% | |
| 292 summarize(ymin = min(y), ystdmin = mean(y) - sd(y), | |
| 293 ymax = max(y), ystdmax = mean(y) + sd(y), | |
| 294 ymean = mean(y)) | |
| 295 par(mar = rep(.1, 4)) | |
| 296 p <- ggplot(df_summary, aes(x = inputvar, y = ymean)) + | |
| 297 geom_point(size = 2) + | |
| 298 geom_errorbar(aes(ymin = ystdmin, ymax = ystdmax)) | |
| 299 meanpredict <- rowMeans(matrix(as.numeric(tunedmodelyall), ncol = nbensemble)) | |
| 300 print(p) | |
| 301 } | |
| 302 return(modelssvr) | |
| 303 } | |
| 304 | |
| 305 #" Reads ENVI hdr file | |
| 306 #" | |
| 307 #" @param hdrpath Path of the hdr file | |
| 308 #" | |
| 309 #" @return list of the content of the hdr file | |
| 310 #" @export | |
| 311 read_envi_header <- function(hdrpath) { | |
| 312 if (!grepl(".hdr$", hdrpath)) { | |
| 313 stop("File extension should be .hdr") | |
| 314 } | |
| 315 hdr <- readLines(hdrpath) | |
| 316 ## check ENVI at beginning of file | |
| 317 if (!grepl("ENVI", hdr[1])) { | |
| 318 stop("Not an ENVI header (ENVI keyword missing)") | |
| 319 } else { | |
| 320 hdr <- hdr [-1] | |
| 321 } | |
| 322 ## remove curly braces and put multi-line key-value-pairs into one line | |
| 323 hdr <- gsub("\\{([^}]*)\\}", "\\1", hdr) | |
| 324 l <- grep("\\{", hdr) | |
| 325 r <- grep("\\}", hdr) | |
| 326 | |
| 327 if (length(l) != length(r)) { | |
| 328 stop("Error matching curly braces in header (differing numbers).") | |
| 329 } | |
| 330 | |
| 331 if (any(r <= l)) { | |
| 332 stop("Mismatch of curly braces in header.") | |
| 333 } | |
| 334 | |
| 335 hdr[l] <- sub("\\{", "", hdr[l]) | |
| 336 hdr[r] <- sub("\\}", "", hdr[r]) | |
| 337 | |
| 338 for (i in rev(seq_along(l))) { | |
| 339 hdr <- c( | |
| 340 hdr [seq_len(l [i] - 1)], | |
| 341 paste(hdr [l [i]:r [i]], collapse = "\n"), | |
| 342 hdr [-seq_len(r [i])] | |
| 343 ) | |
| 344 } | |
| 345 | |
| 346 ## split key = value constructs into list with keys as names | |
| 347 hdr <- sapply(hdr, split_line, " = ", USE.NAMES = FALSE) | |
| 348 names(hdr) <- tolower(names(hdr)) | |
| 349 | |
| 350 ## process numeric values | |
| 351 tmp <- names(hdr) %in% c( | |
| 352 "samples", "lines", "bands", "header offset", "data type", | |
| 353 "byte order", "default bands", "data ignore value", | |
| 354 "wavelength", "fwhm", "data gain values" | |
| 355 ) | |
| 356 hdr [tmp] <- lapply(hdr [tmp], function(x) { | |
| 357 as.numeric(unlist(strsplit(x, ","))) | |
| 358 }) | |
| 359 | |
| 360 return(hdr) | |
| 361 } | |
| 362 | |
| 363 #" ENVI functions | |
| 364 #" | |
| 365 #" based on https: / / github.com / cran / hyperSpec / blob / master / R / read.ENVI.R | |
| 366 #" added wavelength, fwhm, ... to header reading | |
| 367 #" Title | |
| 368 #" | |
| 369 #" @param x character. | |
| 370 #" @param separator character | |
| 371 #" @param trim_blank boolean. | |
| 372 #" | |
| 373 #" @return list. | |
| 374 #" @export | |
| 375 split_line <- function(x, separator, trim_blank = TRUE) { | |
| 376 tmp <- regexpr(separator, x) | |
| 377 key <- substr(x, 1, tmp - 1) | |
| 378 value <- substr(x, tmp + 1, nchar(x)) | |
| 379 if (trim_blank) { | |
| 380 blank_pattern <- "^[[:blank:]]*([^[:blank:]] + .*[^[:blank:]] + )[[:blank:]]*$" | |
| 381 key <- sub(blank_pattern, "\\1", key) | |
| 382 value <- sub(blank_pattern, "\\1", value) | |
| 383 } | |
| 384 value <- as.list(value) | |
| 385 names(value) <- key | |
| 386 return(value) | |
| 387 } | |
| 388 | |
| 389 #" This function performs full training for hybrid invrsion using SVR with | |
| 390 #" values for default parameters | |
| 391 #" | |
| 392 #" @param minval list. minimum value for input parameters sampled to produce a training LUT | |
| 393 #" @param maxval list. maximum value for input parameters sampled to produce a training LUT | |
| 394 #" @param typedistrib list. Type of distribution. Either "Uniform" or "Gaussian" | |
| 395 #" @param gaussiandistrib list. Mean value and STD corresponding to the parameters sampled with gaussian distribution | |
| 396 #" @param parmset list. list of input parameters set to a specific value | |
| 397 #" @param nbsamples numeric. number of samples in training LUT | |
| 398 #" @param nbsamplesperrun numeric. number of training sample per individual regression model | |
| 399 #" @param nbmodels numeric. number of individual models to be run for ensemble | |
| 400 #" @param replacement bolean. is there replacement in subsampling? | |
| 401 #" @param sailversion character. Either 4SAIL or 4SAIL2 | |
| 402 #" @param parms2estimate list. list of input parameters to be estimated | |
| 403 #" @param bands2select list. list of bands used for regression for each input parameter | |
| 404 #" @param noiselevel list. list of noise value added to reflectance (defined per input parm) | |
| 405 #" @param specprospect list. Includes optical constants required for PROSPECT | |
| 406 #" @param specsoil list. Includes either dry soil and wet soil, or a unique soil sample if the psoil parameter is not inverted | |
| 407 #" @param specatm list. Includes direct and diffuse radiation for clear conditions | |
| 408 #" @param path_results character. path for results | |
| 409 #" @param figplot boolean. Set TRUE to get scatterplot of estimated biophysical variable during training step | |
| 410 #" @param force4lowlai boolean. Set TRUE to artificially reduce leaf chemical constituent content for low LAI | |
| 411 #" | |
| 412 #" | |
| 413 #" @return modelssvr list. regression models trained for the retrieval of inputvar based on brf_lut | |
| 414 #" @export | |
| 415 | |
| 416 train_prosail_inversion <- function(minval = NULL, maxval = NULL, | |
| 417 typedistrib = NULL, gaussiandistrib = NULL, parmset = NULL, | |
| 418 nbsamples = 2000, nbsamplesperrun = 100, nbmodels = 20, replacement = TRUE, | |
| 419 sailversion = "4SAIL", | |
| 420 parms2estimate = "lai", bands2select = NULL, noiselevel = NULL, | |
| 421 specprospect = NULL, specsoil = NULL, specatm = NULL, | |
| 422 path_results = "./", figplot = FALSE, force4lowlai = TRUE) { | |
| 423 | |
| 424 ###===================================================================### | |
| 425 ### 1- PRODUCE A LUT TO TRAIN THE HYBRID INVERSION ### | |
| 426 ###===================================================================### | |
| 427 # Define sensor characteristics | |
| 428 if (is.null(specprospect)) { | |
| 429 specprospect <- prosail::specprospect | |
| 430 } | |
| 431 if (is.null(specsoil)) { | |
| 432 specsoil <- prosail::specsoil | |
| 433 } | |
| 434 if (is.null(specprospect)) { | |
| 435 specatm <- prosail::specatm | |
| 436 } | |
| 437 # define distribution for parameters to be sampled | |
| 438 if (is.null(typedistrib)) { | |
| 439 typedistrib <- data.frame("CHL" = "Uniform", "CAR" = "Uniform", "EWT" = "Uniform", "ANT" = "Uniform", "LMA" = "Uniform", "N" = "Uniform", "BROWN" = "Uniform", | |
| 440 "psoil" = "Uniform", "LIDFa" = "Uniform", "lai" = "Uniform", "q" = "Uniform", "tto" = "Uniform", "tts" = "Uniform", "psi" = "Uniform") | |
| 441 } | |
| 442 if (is.null(gaussiandistrib)) { | |
| 443 gaussiandistrib <- list("Mean" = NULL, "Std" = NULL) | |
| 444 } | |
| 445 if (is.null(minval)) { | |
| 446 minval <- data.frame("CHL" = 10, "CAR" = 0, "EWT" = 0.01, "ANT" = 0, "LMA" = 0.005, "N" = 1.0, "psoil" = 0.0, "BROWN" = 0.0, | |
| 447 "LIDFa" = 20, "lai" = 0.5, "q" = 0.1, "tto" = 0, "tts" = 20, "psi" = 80) | |
| 448 } | |
| 449 if (is.null(maxval)) { | |
| 450 maxval <- data.frame("CHL" = 75, "CAR" = 15, "EWT" = 0.03, "ANT" = 2, "LMA" = 0.03, "N" = 2.0, "psoil" = 1.0, "BROWN" = 0.5, | |
| 451 "LIDFa" = 70, "lai" = 7, "q" = 0.2, "tto" = 5, "tts" = 30, "psi" = 110) | |
| 452 } | |
| 453 # define min and max values | |
| 454 # fixed parameters | |
| 455 if (is.null(parmset)) { | |
| 456 parmset <- data.frame("TypeLidf" = 2, "alpha" = 40) | |
| 457 } | |
| 458 # produce input parameters distribution | |
| 459 if (sailversion == "4SAIL") { | |
| 460 inputprosail <- get_distribution_input_prosail(minval, maxval, parmset, nbsamples, | |
| 461 typedistrib = typedistrib, | |
| 462 Mean = gaussiandistrib$Mean, Std = gaussiandistrib$Std, | |
| 463 force4lowlai = force4lowlai) | |
| 464 } else if (sailversion == "4SAIL2") { | |
| 465 inputprosail <- get_distribution_input_prosail2(minval, maxval, parmset, nbsamples, | |
| 466 typedistrib = typedistrib, | |
| 467 Mean = gaussiandistrib$Mean, Std = gaussiandistrib$Std, | |
| 468 force4lowlai = force4lowlai) | |
| 469 } | |
| 470 if (sailversion == "4SAIL2") { | |
| 471 # Definition of Cv && update LAI | |
| 472 maxlai <- min(c(maxval$lai), 4) | |
| 473 inputprosail$Cv <- NA * inputprosail$lai | |
| 474 inputprosail$Cv[which(inputprosail$lai > maxlai)] <- 1 | |
| 475 inputprosail$Cv[which(inputprosail$lai <= maxlai)] <- (1 / maxlai) + inputprosail$lai[which(inputprosail$lai <= maxlai)] / (maxlai + 1) | |
| 476 inputprosail$Cv <- inputprosail$Cv * matrix(rnorm(length(inputprosail$Cv), mean = 1, sd = 0.1)) | |
| 477 inputprosail$Cv[which(inputprosail$Cv < 0)] <- 0 | |
| 478 inputprosail$Cv[which(inputprosail$Cv > 1)] <- 1 | |
| 479 inputprosail$Cv[which(inputprosail$lai > maxlai)] <- 1 | |
| 480 inputprosail$fraction_brown <- 0 + 0 * inputprosail$lai | |
| 481 inputprosail$diss <- 0 + 0 * inputprosail$lai | |
| 482 inputprosail$Zeta <- 0.2 + 0 * inputprosail$lai | |
| 483 inputprosail$lai <- inputprosail$lai * inputprosail$Cv | |
| 484 } | |
| 485 | |
| 486 # generate LUT of BRF corresponding to inputprosail, for a sensor | |
| 487 brf_lut <- Generate_LUT_BRF(sailversion = sailversion, inputprosail = inputprosail, | |
| 488 specprospect = specprospect, specsoil = specsoil, specatm = specatm) | |
| 489 | |
| 490 # write parameters LUT | |
| 491 output <- matrix(unlist(inputprosail), ncol = length(inputprosail), byrow = FALSE) | |
| 492 filename <- file.path(path_results, "PROSAIL_LUT_InputParms.txt") | |
| 493 write.table(x = format(output, digits = 3), file = filename, append = FALSE, quote = FALSE, | |
| 494 col.names = names(inputprosail), row.names = FALSE, sep = "\t") | |
| 495 # Write BRF LUT corresponding to parameters LUT | |
| 496 filename <- file.path(path_results, "PROSAIL_LUT_reflectance.txt") | |
| 497 write.table(x = format(t(brf_lut), digits = 5), file = filename, append = FALSE, quote = FALSE, | |
| 498 col.names = specprospect$lambda, row.names = FALSE, sep = "\t") | |
| 499 | |
| 500 # Which bands will be used for inversion? | |
| 501 if (is.null(bands2select)) { | |
| 502 bands2select <- list() | |
| 503 for (parm in parms2estimate) { | |
| 504 bands2select[[parm]] <- seq(1, length(specprospect$lambda)) | |
| 505 } | |
| 506 } | |
| 507 # Add gaussian noise to reflectance LUT: one specific LUT per parameter | |
| 508 if (is.null(noiselevel)) { | |
| 509 noiselevel <- list() | |
| 510 for (parm in parms2estimate) { | |
| 511 noiselevel[[parm]] <- 0.01 | |
| 512 } | |
| 513 } | |
| 514 | |
| 515 # produce LIT with noise | |
| 516 brf_lut_noise <- list() | |
| 517 for (parm in parms2estimate) { | |
| 518 brf_lut_noise[[parm]] <- brf_lut[bands2select[[parm]], ] + brf_lut[bands2select[[parm]], ] * matrix(rnorm(nrow(brf_lut[bands2select[[parm]], ]) * ncol(brf_lut[bands2select[[parm]], ]), | |
| 519 0, noiselevel[[parm]]), nrow = nrow(brf_lut[bands2select[[parm]], ])) | |
| 520 } | |
| 521 | |
| 522 ###===================================================================### | |
| 523 ### PERFORM HYBRID INVERSION ### | |
| 524 ###===================================================================### | |
| 525 # train SVR for each variable and each run | |
| 526 modelsvr <- list() | |
| 527 for (parm in parms2estimate) { | |
| 528 colparm <- which(parm == names(inputprosail)) | |
| 529 inputvar <- inputprosail[[colparm]] | |
| 530 modelsvr[[parm]] <- prosail_hybrid_train(brf_lut = brf_lut_noise[[parm]], inputvar = inputvar, | |
| 531 figplot = figplot, nbensemble = nbmodels, withreplacement = replacement) | |
| 532 } | |
| 533 return(modelsvr) | |
| 534 } | |
| 535 | |
| 536 #" writes ENVI hdr file | |
| 537 #" | |
| 538 #" @param hdr content to be written | |
| 539 #" @param hdrpath Path of the hdr file | |
| 540 #" | |
| 541 #" @return None | |
| 542 #" @importFrom stringr str_count | |
| 543 #" @export | |
| 544 write_envi_header <- function(hdr, hdrpath) { | |
| 545 h <- lapply(hdr, function(x) { | |
| 546 if (length(x) > 1 || (is.character(x) && stringr::str_count(x, "\\w + ") > 1)) { | |
| 547 x <- paste0("{", paste(x, collapse = ","), "}") | |
| 548 } | |
| 549 # convert last numerics | |
| 550 x <- as.character(x) | |
| 551 }) | |
| 552 writeLines(c("ENVI", paste(names(hdr), h, sep = "=")), con = hdrpath) | |
| 553 return(invisible()) | |
| 554 } |
