Mercurial > repos > ecology > xarray_coords_info
diff xarray_tool.py @ 3:663e6f115a76 draft default tip
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/data_manipulation/xarray/ commit fd8ad4d97db7b1fd3876ff63e14280474e06fdf7
author | ecology |
---|---|
date | Sun, 31 Jul 2022 21:21:20 +0000 |
parents | 3e73f657a998 |
children |
line wrap: on
line diff
--- a/xarray_tool.py Thu Jan 20 17:07:54 2022 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,365 +0,0 @@ -# xarray tool for: -# - getting metadata information -# - select data and save results in csv file for further post-processing - -import argparse -import csv -import os -import warnings - -import geopandas as gdp - -import pandas as pd - -from shapely.geometry import Point -from shapely.ops import nearest_points - -import xarray as xr - - -class XarrayTool (): - def __init__(self, infile, outfile_info="", outfile_summary="", - select="", outfile="", outputdir="", latname="", - latvalN="", latvalS="", lonname="", lonvalE="", - lonvalW="", filter_list="", coords="", time="", - verbose=False, no_missing=False, coords_info=None, - tolerance=None): - self.infile = infile - self.outfile_info = outfile_info - self.outfile_summary = outfile_summary - self.select = select - self.outfile = outfile - self.outputdir = outputdir - self.latname = latname - if tolerance != "" and tolerance is not None: - self.tolerance = float(tolerance) - else: - self.tolerance = -1 - if latvalN != "" and latvalN is not None: - self.latvalN = float(latvalN) - else: - self.latvalN = "" - if latvalS != "" and latvalS is not None: - self.latvalS = float(latvalS) - else: - self.latvalS = "" - self.lonname = lonname - if lonvalE != "" and lonvalE is not None: - self.lonvalE = float(lonvalE) - else: - self.lonvalE = "" - if lonvalW != "" and lonvalW is not None: - self.lonvalW = float(lonvalW) - else: - self.lonvalW = "" - self.filter = filter_list - self.time = time - self.coords = coords - self.verbose = verbose - self.no_missing = no_missing - # initialization - self.dset = None - self.gset = None - self.coords_info = coords_info - if self.verbose: - print("infile: ", self.infile) - print("outfile_info: ", self.outfile_info) - print("outfile_summary: ", self.outfile_summary) - print("outfile: ", self.outfile) - print("select: ", self.select) - print("outfile: ", self.outfile) - print("outputdir: ", self.outputdir) - print("latname: ", self.latname) - print("latvalN: ", self.latvalN) - print("latvalS: ", self.latvalS) - print("lonname: ", self.lonname) - print("lonvalE: ", self.lonvalE) - print("lonvalW: ", self.lonvalW) - print("filter: ", self.filter) - print("time: ", self.time) - print("coords: ", self.coords) - print("coords_info: ", self.coords_info) - - def info(self): - f = open(self.outfile_info, 'w') - ds = xr.open_dataset(self.infile) - ds.info(f) - f.close() - - def summary(self): - f = open(self.outfile_summary, 'w') - ds = xr.open_dataset(self.infile) - writer = csv.writer(f, delimiter='\t') - header = ['VariableName', 'NumberOfDimensions'] - for idx, val in enumerate(ds.dims.items()): - header.append('Dim' + str(idx) + 'Name') - header.append('Dim' + str(idx) + 'Size') - writer.writerow(header) - for name, da in ds.data_vars.items(): - line = [name] - line.append(len(ds[name].shape)) - for d, s in zip(da.shape, da.sizes): - line.append(s) - line.append(d) - writer.writerow(line) - for name, da in ds.coords.items(): - line = [name] - line.append(len(ds[name].shape)) - for d, s in zip(da.shape, da.sizes): - line.append(s) - line.append(d) - writer.writerow(line) - f.close() - - def rowfilter(self, single_filter): - split_filter = single_filter.split('#') - filter_varname = split_filter[0] - op = split_filter[1] - ll = float(split_filter[2]) - if (op == 'bi'): - rl = float(split_filter[3]) - if filter_varname == self.select: - # filter on values of the selected variable - if op == 'bi': - self.dset = self.dset.where( - (self.dset <= rl) & (self.dset >= ll) - ) - elif op == 'le': - self.dset = self.dset.where(self.dset <= ll) - elif op == 'ge': - self.dset = self.dset.where(self.dset >= ll) - elif op == 'e': - self.dset = self.dset.where(self.dset == ll) - else: # filter on other dimensions of the selected variable - if op == 'bi': - self.dset = self.dset.sel({filter_varname: slice(ll, rl)}) - elif op == 'le': - self.dset = self.dset.sel({filter_varname: slice(None, ll)}) - elif op == 'ge': - self.dset = self.dset.sel({filter_varname: slice(ll, None)}) - elif op == 'e': - self.dset = self.dset.sel({filter_varname: ll}, - method='nearest') - - def selection(self): - if self.dset is None: - self.ds = xr.open_dataset(self.infile) - self.dset = self.ds[self.select] # select variable - if self.time: - self.datetime_selection() - if self.filter: - self.filter_selection() - - self.area_selection() - if self.gset.count() > 1: - # convert to dataframe if several rows and cols - self.gset = self.gset.to_dataframe().dropna(how='all'). \ - reset_index() - self.gset.to_csv(self.outfile, header=True, sep='\t') - else: - data = { - self.latname: [self.gset[self.latname].values], - self.lonname: [self.gset[self.lonname].values], - self.select: [self.gset.values] - } - - df = pd.DataFrame(data, columns=[self.latname, self.lonname, - self.select]) - df.to_csv(self.outfile, header=True, sep='\t') - - def datetime_selection(self): - split_filter = self.time.split('#') - time_varname = split_filter[0] - op = split_filter[1] - ll = split_filter[2] - if (op == 'sl'): - rl = split_filter[3] - self.dset = self.dset.sel({time_varname: slice(ll, rl)}) - elif (op == 'to'): - self.dset = self.dset.sel({time_varname: slice(None, ll)}) - elif (op == 'from'): - self.dset = self.dset.sel({time_varname: slice(ll, None)}) - elif (op == 'is'): - self.dset = self.dset.sel({time_varname: ll}, method='nearest') - - def filter_selection(self): - for single_filter in self.filter: - self.rowfilter(single_filter) - - def area_selection(self): - - if self.latvalS != "" and self.lonvalW != "": - # Select geographical area - self.gset = self.dset.sel({self.latname: - slice(self.latvalS, self.latvalN), - self.lonname: - slice(self.lonvalW, self.lonvalE)}) - elif self.latvalN != "" and self.lonvalE != "": - # select nearest location - if self.no_missing: - self.nearest_latvalN = self.latvalN - self.nearest_lonvalE = self.lonvalE - else: - # find nearest location without NaN values - self.nearest_location() - if self.tolerance > 0: - self.gset = self.dset.sel({self.latname: self.nearest_latvalN, - self.lonname: self.nearest_lonvalE}, - method='nearest', - tolerance=self.tolerance) - else: - self.gset = self.dset.sel({self.latname: self.nearest_latvalN, - self.lonname: self.nearest_lonvalE}, - method='nearest') - else: - self.gset = self.dset - - def nearest_location(self): - # Build a geopandas dataframe with all first elements in each dimension - # so we assume null values correspond to a mask that is the same for - # all dimensions in the dataset. - dsel_frame = self.dset - for dim in self.dset.dims: - if dim != self.latname and dim != self.lonname: - dsel_frame = dsel_frame.isel({dim: 0}) - # transform to pandas dataframe - dff = dsel_frame.to_dataframe().dropna().reset_index() - # transform to geopandas to collocate - gdf = gdp.GeoDataFrame(dff, - geometry=gdp.points_from_xy(dff[self.lonname], - dff[self.latname])) - # Find nearest location where values are not null - point = Point(self.lonvalE, self.latvalN) - multipoint = gdf.geometry.unary_union - queried_geom, nearest_geom = nearest_points(point, multipoint) - self.nearest_latvalN = nearest_geom.y - self.nearest_lonvalE = nearest_geom.x - - def selection_from_coords(self): - fcoords = pd.read_csv(self.coords, sep='\t') - for row in fcoords.itertuples(): - self.latvalN = row[0] - self.lonvalE = row[1] - self.outfile = (os.path.join(self.outputdir, - self.select + '_' + - str(row.Index) + '.tabular')) - self.selection() - - def get_coords_info(self): - ds = xr.open_dataset(self.infile) - for c in ds.coords: - filename = os.path.join(self.coords_info, - c.strip() + - '.tabular') - pd = ds.coords[c].to_pandas() - pd.index = range(len(pd)) - pd.to_csv(filename, header=False, sep='\t') - - -if __name__ == '__main__': - warnings.filterwarnings("ignore") - parser = argparse.ArgumentParser() - - parser.add_argument( - 'infile', - help='netCDF input filename' - ) - parser.add_argument( - '--info', - help='Output filename where metadata information is stored' - ) - parser.add_argument( - '--summary', - help='Output filename where data summary information is stored' - ) - parser.add_argument( - '--select', - help='Variable name to select' - ) - parser.add_argument( - '--latname', - help='Latitude name' - ) - parser.add_argument( - '--latvalN', - help='North latitude value' - ) - parser.add_argument( - '--latvalS', - help='South latitude value' - ) - parser.add_argument( - '--lonname', - help='Longitude name' - ) - parser.add_argument( - '--lonvalE', - help='East longitude value' - ) - parser.add_argument( - '--lonvalW', - help='West longitude value' - ) - parser.add_argument( - '--tolerance', - help='Maximum distance between original and selected value for ' - ' inexact matches e.g. abs(index[indexer] - target) <= tolerance' - ) - parser.add_argument( - '--coords', - help='Input file containing Latitude and Longitude' - 'for geographical selection' - ) - parser.add_argument( - '--coords_info', - help='output-folder where for each coordinate, coordinate values ' - ' are being printed in the corresponding outputfile' - ) - parser.add_argument( - '--filter', - nargs="*", - help='Filter list variable#operator#value_s#value_e' - ) - parser.add_argument( - '--time', - help='select timeseries variable#operator#value_s[#value_e]' - ) - parser.add_argument( - '--outfile', - help='csv outfile for storing results of the selection' - '(valid only when --select)' - ) - parser.add_argument( - '--outputdir', - help='folder name for storing results with multiple selections' - '(valid only when --select)' - ) - parser.add_argument( - "-v", "--verbose", - help="switch on verbose mode", - action="store_true" - ) - parser.add_argument( - "--no_missing", - help="""Do not take into account possible null/missing values - (only valid for single location)""", - action="store_true" - ) - args = parser.parse_args() - - p = XarrayTool(args.infile, args.info, args.summary, args.select, - args.outfile, args.outputdir, args.latname, - args.latvalN, args.latvalS, args.lonname, - args.lonvalE, args.lonvalW, args.filter, - args.coords, args.time, args.verbose, - args.no_missing, args.coords_info, args.tolerance) - if args.info: - p.info() - if args.summary: - p.summary() - if args.coords: - p.selection_from_coords() - elif args.select: - p.selection() - elif args.coords_info: - p.get_coords_info()