Mercurial > repos > ecology > xarray_coords_info
view xarray_netcdf2netcdf.py @ 0:fea8a53f8099 draft
"planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/data_manipulation/xarray/ commit 57b6d23e3734d883e71081c78e77964d61be82ba"
author | ecology |
---|---|
date | Sun, 06 Jun 2021 08:50:43 +0000 |
parents | |
children | 3e73f657a998 |
line wrap: on
line source
#!/usr/bin/env python3 # # Apply operations on selected variables # - scale # one can also select the range of time (for timeseries) # to apply these operations over the range only # when a range of time is selected and when scaling, one # can choose to save the entire timeseries or # the selected range only. # when scaling, one can add additional filters on dimensions # (typically used to filter over latitudes and longitudes) import argparse import warnings import xarray as xr # noqa: E402 class netCDF2netCDF (): def __init__(self, infile, varname, scale="", output="output.netcdf", write_all=False, filter_list="", verbose=False): self.infile = infile self.verbose = verbose self.varname = varname self.write_all = write_all self.filter = filter_list self.selection = {} if scale == "" or scale is None: self.scale = 1 else: self.scale = float(scale) if output is None: self.output = "output.netcdf" else: self.output = output # initialization self.dset = None self.subset = None if self.verbose: print("infile: ", self.infile) print("varname: ", self.varname) print("filter_list: ", self.filter) print("scale: ", self.scale) print("write_all: ", self.write_all) print("output: ", self.output) def dimension_selection(self, single_filter): split_filter = single_filter.split('#') dimension_varname = split_filter[0] op = split_filter[1] ll = int(split_filter[2]) if (op == 'sl'): rl = int(split_filter[3]) self.selection[dimension_varname] = slice(ll, rl) elif (op == 'to'): self.selection[dimension_varname] = slice(None, ll) elif (op == 'from'): self.selection[dimension_varname] = slice(ll, None) elif (op == 'is'): self.selection[dimension_varname] = ll def filter_selection(self): for single_filter in self.filter: self.dimension_selection(single_filter) if self.write_all: self.ds[self.varname] = \ self.ds[self.varname].isel(self.selection)*self.scale else: self.dset = \ self.ds[self.varname].isel(self.selection)*self.scale def compute(self): if self.dset is None: self.ds = xr.open_dataset(self.infile) if self.filter: self.filter_selection() if self.verbose: print(self.selection) elif self.write_all is not None: self.dset = self.ds[self.varname] def save(self): if self.write_all: self.ds.to_netcdf(self.output) else: self.dset.to_netcdf(self.output) if __name__ == '__main__': warnings.filterwarnings("ignore") parser = argparse.ArgumentParser() parser.add_argument( 'input', help='input filename in netCDF format' ) parser.add_argument( 'varname', help='Specify which variable to plot (case sensitive)' ) parser.add_argument( '--filter', nargs="*", help='Filter list variable#operator#value_s#value_e' ) parser.add_argument( '--output', help='Output filename to store the resulting netCDF file' ) parser.add_argument( '--scale', help='scale factor to apply to selection (float)' ) parser.add_argument( "--write_all", help="write all data to netCDF", action="store_true") parser.add_argument( "-v", "--verbose", help="switch on verbose mode", action="store_true") args = parser.parse_args() dset = netCDF2netCDF(infile=args.input, varname=args.varname, scale=args.scale, output=args.output, filter_list=args.filter, write_all=args.write_all, verbose=args.verbose) dset.compute() dset.save()