Mercurial > repos > ecology > xarray_metadata_info
comparison xarray_select.py @ 5:00de53d18b99 draft default tip
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/data_manipulation/xarray/ commit fd8ad4d97db7b1fd3876ff63e14280474e06fdf7
author | ecology |
---|---|
date | Sun, 31 Jul 2022 21:22:03 +0000 (2022-07-31) |
parents | |
children |
comparison
equal
deleted
inserted
replaced
4:9bbaab36a5d4 | 5:00de53d18b99 |
---|---|
1 # xarray tool for: | |
2 # - getting metadata information | |
3 # - select data and save results in csv file for further post-processing | |
4 | |
5 import argparse | |
6 import os | |
7 import warnings | |
8 | |
9 import geopandas as gdp | |
10 | |
11 import pandas as pd | |
12 | |
13 from shapely.geometry import Point | |
14 from shapely.ops import nearest_points | |
15 | |
16 import xarray as xr | |
17 | |
18 | |
19 class XarraySelect (): | |
20 def __init__(self, infile, select="", outfile="", outputdir="", | |
21 latname="", latvalN="", latvalS="", lonname="", | |
22 lonvalE="", lonvalW="", filter_list="", coords="", | |
23 time="", verbose=False, no_missing=False, | |
24 tolerance=None): | |
25 self.infile = infile | |
26 self.select = select | |
27 self.outfile = outfile | |
28 self.outputdir = outputdir | |
29 self.latname = latname | |
30 if tolerance != "" and tolerance is not None: | |
31 self.tolerance = float(tolerance) | |
32 else: | |
33 self.tolerance = -1 | |
34 if latvalN != "" and latvalN is not None: | |
35 self.latvalN = float(latvalN) | |
36 else: | |
37 self.latvalN = "" | |
38 if latvalS != "" and latvalS is not None: | |
39 self.latvalS = float(latvalS) | |
40 else: | |
41 self.latvalS = "" | |
42 self.lonname = lonname | |
43 if lonvalE != "" and lonvalE is not None: | |
44 self.lonvalE = float(lonvalE) | |
45 else: | |
46 self.lonvalE = "" | |
47 if lonvalW != "" and lonvalW is not None: | |
48 self.lonvalW = float(lonvalW) | |
49 else: | |
50 self.lonvalW = "" | |
51 self.filter = filter_list | |
52 self.time = time | |
53 self.coords = coords | |
54 self.verbose = verbose | |
55 self.no_missing = no_missing | |
56 # initialization | |
57 self.dset = None | |
58 self.gset = None | |
59 if self.verbose: | |
60 print("infile: ", self.infile) | |
61 print("outfile: ", self.outfile) | |
62 print("select: ", self.select) | |
63 print("outfile: ", self.outfile) | |
64 print("outputdir: ", self.outputdir) | |
65 print("latname: ", self.latname) | |
66 print("latvalN: ", self.latvalN) | |
67 print("latvalS: ", self.latvalS) | |
68 print("lonname: ", self.lonname) | |
69 print("lonvalE: ", self.lonvalE) | |
70 print("lonvalW: ", self.lonvalW) | |
71 print("filter: ", self.filter) | |
72 print("time: ", self.time) | |
73 print("coords: ", self.coords) | |
74 | |
75 def rowfilter(self, single_filter): | |
76 split_filter = single_filter.split('#') | |
77 filter_varname = split_filter[0] | |
78 op = split_filter[1] | |
79 ll = float(split_filter[2]) | |
80 if (op == 'bi'): | |
81 rl = float(split_filter[3]) | |
82 if filter_varname == self.select: | |
83 # filter on values of the selected variable | |
84 if op == 'bi': | |
85 self.dset = self.dset.where( | |
86 (self.dset <= rl) & (self.dset >= ll) | |
87 ) | |
88 elif op == 'le': | |
89 self.dset = self.dset.where(self.dset <= ll) | |
90 elif op == 'ge': | |
91 self.dset = self.dset.where(self.dset >= ll) | |
92 elif op == 'e': | |
93 self.dset = self.dset.where(self.dset == ll) | |
94 else: # filter on other dimensions of the selected variable | |
95 if op == 'bi': | |
96 self.dset = self.dset.sel({filter_varname: slice(ll, rl)}) | |
97 elif op == 'le': | |
98 self.dset = self.dset.sel({filter_varname: slice(None, ll)}) | |
99 elif op == 'ge': | |
100 self.dset = self.dset.sel({filter_varname: slice(ll, None)}) | |
101 elif op == 'e': | |
102 self.dset = self.dset.sel({filter_varname: ll}, | |
103 method='nearest') | |
104 | |
105 def selection(self): | |
106 if self.dset is None: | |
107 self.ds = xr.open_dataset(self.infile) | |
108 self.dset = self.ds[self.select] # select variable | |
109 if self.time: | |
110 self.datetime_selection() | |
111 if self.filter: | |
112 self.filter_selection() | |
113 | |
114 self.area_selection() | |
115 if self.gset.count() > 1: | |
116 # convert to dataframe if several rows and cols | |
117 self.gset = self.gset.to_dataframe().dropna(how='all'). \ | |
118 reset_index() | |
119 self.gset.to_csv(self.outfile, header=True, sep='\t') | |
120 else: | |
121 data = { | |
122 self.latname: [self.gset[self.latname].values], | |
123 self.lonname: [self.gset[self.lonname].values], | |
124 self.select: [self.gset.values] | |
125 } | |
126 | |
127 df = pd.DataFrame(data, columns=[self.latname, self.lonname, | |
128 self.select]) | |
129 df.to_csv(self.outfile, header=True, sep='\t') | |
130 | |
131 def datetime_selection(self): | |
132 split_filter = self.time.split('#') | |
133 time_varname = split_filter[0] | |
134 op = split_filter[1] | |
135 ll = split_filter[2] | |
136 if (op == 'sl'): | |
137 rl = split_filter[3] | |
138 self.dset = self.dset.sel({time_varname: slice(ll, rl)}) | |
139 elif (op == 'to'): | |
140 self.dset = self.dset.sel({time_varname: slice(None, ll)}) | |
141 elif (op == 'from'): | |
142 self.dset = self.dset.sel({time_varname: slice(ll, None)}) | |
143 elif (op == 'is'): | |
144 self.dset = self.dset.sel({time_varname: ll}, method='nearest') | |
145 | |
146 def filter_selection(self): | |
147 for single_filter in self.filter: | |
148 self.rowfilter(single_filter) | |
149 | |
150 def area_selection(self): | |
151 | |
152 if self.latvalS != "" and self.lonvalW != "": | |
153 # Select geographical area | |
154 self.gset = self.dset.sel({self.latname: | |
155 slice(self.latvalS, self.latvalN), | |
156 self.lonname: | |
157 slice(self.lonvalW, self.lonvalE)}) | |
158 elif self.latvalN != "" and self.lonvalE != "": | |
159 # select nearest location | |
160 if self.no_missing: | |
161 self.nearest_latvalN = self.latvalN | |
162 self.nearest_lonvalE = self.lonvalE | |
163 else: | |
164 # find nearest location without NaN values | |
165 self.nearest_location() | |
166 if self.tolerance > 0: | |
167 self.gset = self.dset.sel({self.latname: self.nearest_latvalN, | |
168 self.lonname: self.nearest_lonvalE}, | |
169 method='nearest', | |
170 tolerance=self.tolerance) | |
171 else: | |
172 self.gset = self.dset.sel({self.latname: self.nearest_latvalN, | |
173 self.lonname: self.nearest_lonvalE}, | |
174 method='nearest') | |
175 else: | |
176 self.gset = self.dset | |
177 | |
178 def nearest_location(self): | |
179 # Build a geopandas dataframe with all first elements in each dimension | |
180 # so we assume null values correspond to a mask that is the same for | |
181 # all dimensions in the dataset. | |
182 dsel_frame = self.dset | |
183 for dim in self.dset.dims: | |
184 if dim != self.latname and dim != self.lonname: | |
185 dsel_frame = dsel_frame.isel({dim: 0}) | |
186 # transform to pandas dataframe | |
187 dff = dsel_frame.to_dataframe().dropna().reset_index() | |
188 # transform to geopandas to collocate | |
189 gdf = gdp.GeoDataFrame(dff, | |
190 geometry=gdp.points_from_xy(dff[self.lonname], | |
191 dff[self.latname])) | |
192 # Find nearest location where values are not null | |
193 point = Point(self.lonvalE, self.latvalN) | |
194 multipoint = gdf.geometry.unary_union | |
195 queried_geom, nearest_geom = nearest_points(point, multipoint) | |
196 self.nearest_latvalN = nearest_geom.y | |
197 self.nearest_lonvalE = nearest_geom.x | |
198 | |
199 def selection_from_coords(self): | |
200 fcoords = pd.read_csv(self.coords, sep='\t') | |
201 for row in fcoords.itertuples(): | |
202 self.latvalN = row[0] | |
203 self.lonvalE = row[1] | |
204 self.outfile = (os.path.join(self.outputdir, | |
205 self.select + '_' + | |
206 str(row.Index) + '.tabular')) | |
207 self.selection() | |
208 | |
209 | |
210 if __name__ == '__main__': | |
211 warnings.filterwarnings("ignore") | |
212 parser = argparse.ArgumentParser() | |
213 | |
214 parser.add_argument( | |
215 'infile', | |
216 help='netCDF input filename' | |
217 ) | |
218 parser.add_argument( | |
219 '--select', | |
220 help='Variable name to select' | |
221 ) | |
222 parser.add_argument( | |
223 '--latname', | |
224 help='Latitude name' | |
225 ) | |
226 parser.add_argument( | |
227 '--latvalN', | |
228 help='North latitude value' | |
229 ) | |
230 parser.add_argument( | |
231 '--latvalS', | |
232 help='South latitude value' | |
233 ) | |
234 parser.add_argument( | |
235 '--lonname', | |
236 help='Longitude name' | |
237 ) | |
238 parser.add_argument( | |
239 '--lonvalE', | |
240 help='East longitude value' | |
241 ) | |
242 parser.add_argument( | |
243 '--lonvalW', | |
244 help='West longitude value' | |
245 ) | |
246 parser.add_argument( | |
247 '--tolerance', | |
248 help='Maximum distance between original and selected value for ' | |
249 ' inexact matches e.g. abs(index[indexer] - target) <= tolerance' | |
250 ) | |
251 parser.add_argument( | |
252 '--coords', | |
253 help='Input file containing Latitude and Longitude' | |
254 'for geographical selection' | |
255 ) | |
256 parser.add_argument( | |
257 '--filter', | |
258 nargs="*", | |
259 help='Filter list variable#operator#value_s#value_e' | |
260 ) | |
261 parser.add_argument( | |
262 '--time', | |
263 help='select timeseries variable#operator#value_s[#value_e]' | |
264 ) | |
265 parser.add_argument( | |
266 '--outfile', | |
267 help='csv outfile for storing results of the selection' | |
268 '(valid only when --select)' | |
269 ) | |
270 parser.add_argument( | |
271 '--outputdir', | |
272 help='folder name for storing results with multiple selections' | |
273 '(valid only when --select)' | |
274 ) | |
275 parser.add_argument( | |
276 "-v", "--verbose", | |
277 help="switch on verbose mode", | |
278 action="store_true" | |
279 ) | |
280 parser.add_argument( | |
281 "--no_missing", | |
282 help="""Do not take into account possible null/missing values | |
283 (only valid for single location)""", | |
284 action="store_true" | |
285 ) | |
286 args = parser.parse_args() | |
287 | |
288 p = XarraySelect(args.infile, args.select, args.outfile, args.outputdir, | |
289 args.latname, args.latvalN, args.latvalS, args.lonname, | |
290 args.lonvalE, args.lonvalW, args.filter, | |
291 args.coords, args.time, args.verbose, | |
292 args.no_missing, args.tolerance) | |
293 if args.select: | |
294 p.selection() |