Mercurial > repos > ecology > xarray_netcdf2netcdf
comparison timeseries.py @ 3:c91c27b63fb2 draft default tip
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/data_manipulation/xarray/ commit fd8ad4d97db7b1fd3876ff63e14280474e06fdf7
author | ecology |
---|---|
date | Sun, 31 Jul 2022 21:20:00 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
2:e87073edecd6 | 3:c91c27b63fb2 |
---|---|
1 #!/usr/bin/env python3 | |
2 # | |
3 # | |
4 # usage: netCDF_timeseries.py [-h] [--output output.png] | |
5 # [--save timeseries.tabular] | |
6 # [--config config-file] | |
7 # [-v] | |
8 # input varname | |
9 # positional arguments: | |
10 # input input filename with geographical coordinates (netCDF | |
11 # format) | |
12 # varname Specify which variable to extract (case sensitive) | |
13 # | |
14 # optional arguments: | |
15 # -h, --help show this help message and exit | |
16 # --output output.png filename to store image (png format) | |
17 # --save timeseries.tabular filename to store timeseries (tabular format) | |
18 # --config config file extract parameters | |
19 # -v, --verbose switch on verbose mode | |
20 # | |
21 import argparse | |
22 import ast | |
23 import warnings | |
24 | |
25 import cftime # noqa: F401 | |
26 | |
27 import matplotlib as mpl | |
28 mpl.use('Agg') | |
29 | |
30 import matplotlib.pyplot as plt # noqa: I202,E402 | |
31 from matplotlib.dates import DateFormatter # noqa: I202,E402 | |
32 | |
33 import xarray as xr # noqa: I202,E402 | |
34 | |
35 | |
36 class TimeSeries (): | |
37 def __init__(self, input, varname, output, save, verbose=False, | |
38 config_file=""): | |
39 | |
40 li = list(input.split(",")) | |
41 if len(li) > 1: | |
42 self.input = li | |
43 else: | |
44 self.input = input | |
45 | |
46 self.varname = varname | |
47 self.xylim_supported = True | |
48 if output == "" or output is None: | |
49 self.output = "Timeseries.png" | |
50 else: | |
51 self.output = output | |
52 if save == "" or save is None: | |
53 self.save = "Timeseries.tabular" | |
54 else: | |
55 self.save = save | |
56 self.verbose = verbose | |
57 self.time_start_value = "" | |
58 self.time_end_value = "" | |
59 self.lon_value = "" | |
60 self.lat_value = "" | |
61 self.lat_name = 'lat' | |
62 self.lon_name = 'lon' | |
63 self.time_name = 'time' | |
64 self.title = '' | |
65 self.xlabel = '' | |
66 self.ylabel = '' | |
67 self.format_date = '' | |
68 if config_file != "" and config_file is not None: | |
69 with open(config_file) as f: | |
70 sdict = ''.join( | |
71 f.read().replace("\n", "").split('{')[1].split('}')[0] | |
72 ) | |
73 tmp = ast.literal_eval('{' + sdict.strip() + '}') | |
74 for key in tmp: | |
75 if key == 'time_start_value': | |
76 self.time_start_value = tmp[key] | |
77 if key == 'time_end_value': | |
78 self.time_end_value = tmp[key] | |
79 if key == 'lon_value': | |
80 self.lon_value = tmp[key] | |
81 if key == 'lat_value': | |
82 self.lat_value = tmp[key] | |
83 if key == 'lon_name': | |
84 self.lon_name = tmp[key] | |
85 if key == 'lat_name': | |
86 self.lat_name = tmp[key] | |
87 if key == 'time_name': | |
88 self.time_name = tmp[key] | |
89 if key == 'title': | |
90 self.title = tmp[key] | |
91 if key == 'xlabel': | |
92 self.xlabel = tmp[key] | |
93 if key == 'ylabel': | |
94 self.ylabel = tmp[key] | |
95 if key == 'format_date': | |
96 self.format_date = tmp[key] | |
97 self.format_date = self.format_date.replace('X', '%') | |
98 | |
99 if type(self.input) is list: | |
100 self.dset = xr.open_mfdataset(self.input, use_cftime=True) | |
101 else: | |
102 self.dset = xr.open_dataset(self.input, use_cftime=True) | |
103 | |
104 if verbose: | |
105 print("input: ", self.input) | |
106 print("varname: ", self.varname) | |
107 if self.time_start_value: | |
108 print("time_start_value: ", self.time_start_value) | |
109 if self.time_end_value: | |
110 print("time_end_value: ", self.time_end_value) | |
111 print("output: ", self.output) | |
112 if self.lon_value: | |
113 print(self.lon_name, self.lon_value) | |
114 if self.lat_value: | |
115 print(self.lat_name, self.lat_value) | |
116 | |
117 def plot(self): | |
118 if self.lon_value: | |
119 lon_c = float(self.lon_value) | |
120 if self.lat_value: | |
121 lat_c = float(self.lat_value) | |
122 if self.lat_value and self.lon_value: | |
123 self.df = self.dset.sel({self.lat_name: lat_c, | |
124 self.lon_name: lon_c}, | |
125 method='nearest') | |
126 else: | |
127 self.df = self.dset | |
128 if self.time_start_value or self.time_end_value: | |
129 self.df = self.df.sel({self.time_name: slice(self.time_start_value, | |
130 self.time_end_value)}) | |
131 # Saving the time series into a tabular | |
132 self.df = self.df[self.varname].squeeze().to_dataframe() | |
133 self.df.dropna().to_csv(self.save, sep='\t') | |
134 # Plot the time series into png image | |
135 fig = plt.figure(figsize=(15, 5)) | |
136 ax = plt.subplot(111) | |
137 self.df[self.varname].plot(ax=ax) | |
138 if self.title: | |
139 plt.title(self.title) | |
140 if self.xlabel: | |
141 plt.xlabel(self.xlabel) | |
142 if self.ylabel: | |
143 plt.ylabel(self.ylabel) | |
144 if self.format_date: | |
145 ax.xaxis.set_major_formatter(DateFormatter(self.format_date)) | |
146 fig.tight_layout() | |
147 fig.savefig(self.output) | |
148 | |
149 | |
150 if __name__ == '__main__': | |
151 warnings.filterwarnings("ignore") | |
152 parser = argparse.ArgumentParser() | |
153 parser.add_argument( | |
154 'input', | |
155 help='input filename with geographical coordinates (netCDF format)' | |
156 ) | |
157 parser.add_argument( | |
158 'varname', | |
159 help='Specify which variable to plot (case sensitive)' | |
160 ) | |
161 parser.add_argument( | |
162 '--output', | |
163 help='output filename to store resulting image (png format)' | |
164 ) | |
165 parser.add_argument( | |
166 '--save', | |
167 help='save resulting tabular file (tabular format) into filename' | |
168 ) | |
169 parser.add_argument( | |
170 '--config', | |
171 help='pass timeseries parameters via a config file' | |
172 ) | |
173 parser.add_argument( | |
174 "-v", "--verbose", | |
175 help="switch on verbose mode", | |
176 action="store_true") | |
177 args = parser.parse_args() | |
178 | |
179 dset = TimeSeries(input=args.input, varname=args.varname, | |
180 output=args.output, save=args.save, verbose=args.verbose, | |
181 config_file=args.config) | |
182 dset.plot() |