diff xarray_netcdf2netcdf.py @ 3:bf595d613af4 draft

"planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/data_manipulation/xarray/ commit 2166974df82f97557b082a9e55135098e61640c4"
author ecology
date Thu, 20 Jan 2022 17:07:19 +0000
parents 123a9a629bef
children
line wrap: on
line diff
--- a/xarray_netcdf2netcdf.py	Sun Jun 06 08:51:41 2021 +0000
+++ b/xarray_netcdf2netcdf.py	Thu Jan 20 17:07:19 2022 +0000
@@ -1,133 +1,268 @@
-#!/usr/bin/env python3
-#
-#  Apply operations on selected variables
-# - scale
-# one can also select the range of time (for timeseries)
-# to apply these operations over the range only
-# when a range of time is selected and when scaling, one
-# can choose to save the entire timeseries or
-# the selected range only.
-# when scaling, one can add additional filters on dimensions
-# (typically used to filter over latitudes and longitudes)
-
-
-import argparse
-import warnings
-
-import xarray as xr  # noqa: E402
-
-
-class netCDF2netCDF ():
-    def __init__(self, infile, varname, scale="",
-                 output="output.netcdf",
-                 write_all=False,
-                 filter_list="",
-                 verbose=False):
-        self.infile = infile
-        self.verbose = verbose
-        self.varname = varname
-        self.write_all = write_all
-        self.filter = filter_list
-        self.selection = {}
-        if scale == "" or scale is None:
-            self.scale = 1
-        else:
-            self.scale = float(scale)
-        if output is None:
-            self.output = "output.netcdf"
-        else:
-            self.output = output
-        # initialization
-        self.dset = None
-        self.subset = None
-        if self.verbose:
-            print("infile: ", self.infile)
-            print("varname: ", self.varname)
-            print("filter_list: ", self.filter)
-            print("scale: ", self.scale)
-            print("write_all: ", self.write_all)
-            print("output: ", self.output)
-
-    def dimension_selection(self, single_filter):
-        split_filter = single_filter.split('#')
-        dimension_varname = split_filter[0]
-        op = split_filter[1]
-        ll = int(split_filter[2])
-        if (op == 'sl'):
-            rl = int(split_filter[3])
-            self.selection[dimension_varname] = slice(ll, rl)
-        elif (op == 'to'):
-            self.selection[dimension_varname] = slice(None, ll)
-        elif (op == 'from'):
-            self.selection[dimension_varname] = slice(ll, None)
-        elif (op == 'is'):
-            self.selection[dimension_varname] = ll
-
-    def filter_selection(self):
-        for single_filter in self.filter:
-            self.dimension_selection(single_filter)
-        if self.write_all:
-            self.ds[self.varname] = \
-                self.ds[self.varname].isel(self.selection)*self.scale
-        else:
-            self.dset = \
-                self.ds[self.varname].isel(self.selection)*self.scale
-
-    def compute(self):
-        if self.dset is None:
-            self.ds = xr.open_dataset(self.infile)
-            if self.filter:
-                self.filter_selection()
-                if self.verbose:
-                    print(self.selection)
-            elif self.write_all is not None:
-                self.dset = self.ds[self.varname]
-
-    def save(self):
-        if self.write_all:
-            self.ds.to_netcdf(self.output)
-        else:
-            self.dset.to_netcdf(self.output)
-
-
-if __name__ == '__main__':
-    warnings.filterwarnings("ignore")
-    parser = argparse.ArgumentParser()
-    parser.add_argument(
-        'input',
-        help='input filename in netCDF format'
-    )
-    parser.add_argument(
-        'varname',
-        help='Specify which variable to plot (case sensitive)'
-    )
-    parser.add_argument(
-        '--filter',
-        nargs="*",
-        help='Filter list variable#operator#value_s#value_e'
-    )
-    parser.add_argument(
-        '--output',
-        help='Output filename to store the resulting netCDF file'
-    )
-    parser.add_argument(
-        '--scale',
-        help='scale factor to apply to selection (float)'
-    )
-    parser.add_argument(
-        "--write_all",
-        help="write all data to netCDF",
-        action="store_true")
-    parser.add_argument(
-        "-v", "--verbose",
-        help="switch on verbose mode",
-        action="store_true")
-    args = parser.parse_args()
-
-    dset = netCDF2netCDF(infile=args.input, varname=args.varname,
-                         scale=args.scale, output=args.output,
-                         filter_list=args.filter,
-                         write_all=args.write_all,
-                         verbose=args.verbose)
-    dset.compute()
-    dset.save()
+#!/usr/bin/env python3
+#
+#  Apply operations on selected variables
+# - scale
+# one can also select the range of time (for timeseries)
+# to apply these operations over the range only
+# when a range of time is selected and when scaling, one
+# can choose to save the entire timeseries or
+# the selected range only.
+# when scaling, one can add additional filters on dimensions
+# (typically used to filter over latitudes and longitudes)
+
+
+import argparse
+import re
+import warnings
+from pathlib import Path
+
+import xarray as xr  # noqa: E402
+
+
+class netCDF2netCDF ():
+    def __init__(self, infile, varname, scale="",
+                 output="output.netcdf",
+                 write_all=False,
+                 keep_attributes=True,
+                 filter_list="",
+                 where_config="",
+                 other="",
+                 sel=False,
+                 drop=False,
+                 verbose=False):
+        self.drop = drop
+        if Path(where_config).exists():
+            f = open(where_config)
+            self.where = f.read().replace("\n", "")
+        else:
+            self.where = ""
+        self.other = other
+        self.sel = sel
+        li = list(infile.split(","))
+        if len(li) > 1:
+            self.infile = li
+        else:
+            self.infile = infile
+        self.verbose = verbose
+        if varname == 'None' or varname is None:
+            self.varname = varname
+        else:
+            li = list(varname.split(","))
+            self.varname = li
+        self.write_all = write_all
+        self.keep_attributes = keep_attributes
+        if self.keep_attributes:
+            xr.set_options(keep_attrs=True)
+        self.filter = filter_list
+        self.selection = {}
+        self.method = {}
+        if scale == "" or scale is None:
+            self.scale = 1
+        else:
+            self.scale = float(scale)
+        if output is None:
+            self.output = "output.netcdf"
+        else:
+            self.output = output
+        # initialization
+        self.dset = None
+        self.subset = None
+        if self.verbose:
+            print("infile: ", self.infile)
+            print("varname: ", self.varname)
+            print("filter_list: ", self.filter)
+            print("scale: ", self.scale)
+            print("write_all: ", self.write_all)
+            print("keep_attributes: ", self.keep_attributes)
+            print("sel: ", self.sel)
+            print("output: ", self.output)
+
+    def apply_selection(self):
+        self.dset = self.ds
+        for key in self.selection:
+            if 'slice' in str(self.selection[key]):
+                self.dset = self.dset.sel(
+                    {key: self.selection[key]}
+                    )
+            else:
+                self.dset = self.dset.sel(
+                    {key: self.selection[key]},
+                    method=self.method[key]
+                    )
+
+    def dimension_selection(self, single_filter):
+        split_filter = single_filter.split('#')
+        dimension_varname = split_filter[0]
+        op = split_filter[1]
+        if self.sel:
+            ll = float(split_filter[2])
+        else:
+            ll = int(split_filter[2])
+        if (op == 'sl'):
+            if self.sel:
+                rl = float(split_filter[3])
+            else:
+                rl = int(split_filter[3])
+            self.selection[dimension_varname] = slice(ll, rl)
+        elif (op == 'to'):
+            self.selection[dimension_varname] = slice(None, ll)
+        elif (op == 'from'):
+            self.selection[dimension_varname] = slice(ll, None)
+        elif (op == 'is'):
+            self.selection[dimension_varname] = ll
+            if self.sel:
+                rl = split_filter[3]
+                if 'None' in rl:
+                    self.method[dimension_varname] = None
+                else:
+                    self.method[dimension_varname] = rl
+
+    def filter_selection(self):
+        for single_filter in self.filter:
+            self.dimension_selection(single_filter)
+
+        if self.sel:
+            self.apply_selection()
+        else:
+            self.dset = \
+                self.ds.isel(self.selection)
+
+        if self.varname != 'None' and self.varname is not None:
+            for var in self.varname:
+                self.dset[var] = \
+                    self.dset[var]*self.scale
+
+    def compute(self):
+        if self.dset is None:
+            if type(self.infile) is list:
+                self.ds = xr.open_mfdataset(self.infile)
+            else:
+                self.ds = xr.open_dataset(self.infile)
+            if self.where != "":
+                if self.drop:
+                    if self.verbose:
+                        print("Where with drop=True")
+                    self.ds = self.ds.where(
+                        self.eval_where(self.where),
+                        drop=True
+                        )
+                elif self.other is not None and self.other != "":
+                    if self.verbose:
+                        print("Where with  other=", float(self.other))
+                    self.ds = self.ds.where(
+                        self.eval_where(self.where),
+                        other=float(self.other)
+                        )
+                else:
+                    self.ds = self.ds.where(
+                        self.eval_where(self.where)
+                        )
+            self.filter_selection()
+            if self.verbose:
+                print(self.selection)
+
+    def save(self):
+        if self.varname != 'None' and \
+            self.varname is not None and \
+                not self.write_all:
+            self.dset[self.varname].to_netcdf(self.output)
+        else:
+            self.dset.to_netcdf(self.output)
+
+    def is_float(self, element) -> bool:
+        try:
+            float(element)
+            return True
+        except ValueError:
+            return False
+
+    def eval_where(self, where_condition):
+        eval_cond = None
+        list_names = list(set(
+                        list(self.ds.keys()) +
+                        list(self.ds.coords.keys()))
+                        )
+        wcond = where_condition
+        check_cond = where_condition
+        for var in list_names:
+            wcond = wcond.replace(var, ' self.ds.' + var + ' ')
+            check_cond = check_cond.replace(var, '')
+        to_remove = "[><=&|()]"
+        check_cond = re.sub(to_remove, "", check_cond).replace("!", "")
+        check_cond = re.sub(' +', ' ', check_cond).strip()
+        list_flt = check_cond.split(" ")
+        no_convert = False
+        for num in list_flt:
+            if not self.is_float(num):
+                no_convert = True
+        if not no_convert:
+            eval_cond = eval(wcond)
+        return eval_cond
+
+
+if __name__ == '__main__':
+    warnings.filterwarnings("ignore")
+    parser = argparse.ArgumentParser()
+    parser.add_argument(
+        'input',
+        help='input filename in netCDF format'
+    )
+    parser.add_argument(
+        'varname',
+        help='Specify which variable to plot (case sensitive)'
+    )
+    parser.add_argument(
+        '--filter',
+        nargs="*",
+        help='Filter list variable#operator#value_s#value_e'
+    )
+    parser.add_argument(
+        '--where',
+        help='filename with where condition to be evaluated'
+    )
+    parser.add_argument(
+        '--output',
+        help='Output filename to store the resulting netCDF file'
+    )
+    parser.add_argument(
+        '--scale',
+        help='scale factor to apply to selection (float)'
+    )
+    parser.add_argument(
+        '--other',
+        help='Value to use for locations where condition is False (float)'
+    )
+    parser.add_argument(
+        "--write_all",
+        help="write all data to netCDF",
+        action="store_true")
+    parser.add_argument(
+        "--keep_attributes",
+        help="Keep all attributes",
+        action="store_true")
+    parser.add_argument(
+        "-v", "--verbose",
+        help="switch on verbose mode",
+        action="store_true")
+    parser.add_argument(
+        "--selection",
+        help="select by values",
+        action="store_true")
+    parser.add_argument(
+        "--drop",
+        help="drop values where condition is not met",
+        action="store_true")
+    args = parser.parse_args()
+
+    print("args.selection", args.selection)
+    dset = netCDF2netCDF(infile=args.input, varname=args.varname,
+                         scale=args.scale, output=args.output,
+                         write_all=args.write_all,
+                         sel=args.selection,
+                         keep_attributes=args.keep_attributes,
+                         filter_list=args.filter,
+                         where_config=args.where,
+                         drop=args.drop, other=args.other,
+                         verbose=args.verbose)
+    dset.compute()
+    dset.save()