comparison w4mcorcov.xml @ 13:2ae2d26e3270 draft

planemo upload for repository https://github.com/HegemanLab/w4mcorcov_galaxy_wrapper/tree/master commit e89c652c0849eb1d5a1e6c9100c72c64a8d388b4
author eschen42
date Wed, 12 Dec 2018 09:20:02 -0500
parents ddaf84e15d06
children 90708fdbc22d
comparison
equal deleted inserted replaced
12:ddaf84e15d06 13:2ae2d26e3270
1 <tool id="w4mcorcov" name="OPLS-DA_Contrasts" version="0.98.16"> 1 <tool id="w4mcorcov" name="OPLS-DA_Contrasts" version="0.98.17">
2 <description>OPLS-DA Contrasts of Univariate Results</description> 2 <description>OPLS-DA Contrasts of Univariate Results</description>
3 <macros> 3 <macros>
4 <xml name="paramPairSigFeatOnly"> 4 <xml name="paramPairSigFeatOnly">
5 <param name="pairSigFeatOnly" type="boolean" checked="true" truevalue="TRUE" falsevalue="FALSE" 5 <param name="pairSigFeatOnly" type="boolean" checked="true" truevalue="TRUE" falsevalue="FALSE"
6 label="Retain only pairwise-significant features" 6 label="Retain only pairwise-significant features"
7 help="When this option is set to 'Yes', analysis will be performed including only features that differ significantly for the pair of levels being contrasted; when set to 'No', any feature that varies significantly across all levels will be included (i.e., exclude any feature that is not significantly different across all levels). See examples below." /> 7 help="When this option is set to 'Yes', analysis will be performed including only features scored by the univariate test as differing significantly for the pair of levels being contrasted; when set to 'No', any feature that varies significantly across all levels will be included (i.e., exclude only features not scored by the univariate test as significantly varying when all levels are considered). See examples below." />
8 </xml> 8 </xml>
9 <xml name="cplots"> 9 <xml name="cplots">
10 <param name="cplot_y" label="C-plot Y-axis" type="select" help="Choose the Y-axis for C-plots."> 10 <param name="cplot_y" label="C-plot Y-axis" type="select" help="Choose the Y-axis for C-plots.">
11 <option value="correlation">Plot VIP versus correlation</option> 11 <option value="correlation">Plot VIP versus correlation</option>
12 <option value="covariance">Plot VIP versus covariance</option> 12 <option value="covariance">Plot VIP versus covariance</option>
15 label="Produce predictor C-plot" 15 label="Produce predictor C-plot"
16 help="When this option is set to 'Yes', correlation will be plotted against vip4 for predictor loadings." /> 16 help="When this option is set to 'Yes', correlation will be plotted against vip4 for predictor loadings." />
17 <param name="cplot_o" type="boolean" checked="true" truevalue="TRUE" falsevalue="FALSE" 17 <param name="cplot_o" type="boolean" checked="true" truevalue="TRUE" falsevalue="FALSE"
18 label="Produce orthogonal C-plot" 18 label="Produce orthogonal C-plot"
19 help="When this option is set to 'Yes', correlation will be plotted against vip4 for orthogonal loadings." /> 19 help="When this option is set to 'Yes', correlation will be plotted against vip4 for orthogonal loadings." />
20 <param name="fdr_features" type="text" value="ALL"
21 label="How many features for p-value calculation?"
22 help="Specify how many features should be used to perform family-wise error rate adjustment of p-values for covariance and correlation. If you were to eliminate features from the data matrix based on significance criteria prior to running this tool, you would want to include them in the count here to avoid underestimating the p-value. Specify 'ALL' to signify that all features that could impact p-value calculation are included in the data matrix."/>
20 </xml> 23 </xml>
21 </macros> 24 </macros>
22 <requirements> 25 <requirements>
23 <!--
24 <requirement type="package" version="3.4.1">r-base</requirement>
25 <requirement type="package" version="1.1_4">r-batch</requirement>
26 <requirement type="package" version="1.2.14">bioconductor-ropls</requirement>
27 -->
28 <requirement type="package">r-base</requirement> 26 <requirement type="package">r-base</requirement>
29 <requirement type="package">r-batch</requirement> 27 <requirement type="package">r-batch</requirement>
30 <requirement type="package" version="1.10.0">bioconductor-ropls</requirement> 28 <requirement type="package" version="1.10.0">bioconductor-ropls</requirement>
31 </requirements> 29 </requirements>
32 <command detect_errors="aggressive"><![CDATA[ 30 <command detect_errors="aggressive"><![CDATA[
33 Rscript '$__tool_directory__/w4mcorcov_wrapper.R' 31 Rscript '$__tool_directory__/w4mcorcov_wrapper.R'
34 dataMatrix_in '$dataMatrix_in' 32 dataMatrix_in '$dataMatrix_in'
35 sampleMetadata_in '$sampleMetadata_in' 33 sampleMetadata_in '$sampleMetadata_in'
36 variableMetadata_in '$variableMetadata_in' 34 variableMetadata_in '$variableMetadata_in'
37 facC '$facC' 35 facC '$facC'
38 #if str( $signif_test.tesC ) == "none": 36 #if str( $signif_test.tesC ) == 'none':
39 tesC "none" 37 tesC 'none'
40 pairSigFeatOnly "FALSE" 38 pairSigFeatOnly 'FALSE'
41 #else: 39 #else:
42 tesC '$signif_test.tesC' 40 tesC '$signif_test.tesC'
43 pairSigFeatOnly '$signif_test.pairSigFeatOnly' 41 pairSigFeatOnly '$signif_test.pairSigFeatOnly'
44 #end if 42 #end if
45 levCSV '$levCSV' 43 levCSV '$levCSV'
46 matchingC '$matchingC' 44 matchingC '$matchingC'
47 labelFeatures '$labelFeatures' 45 labelFeatures '$labelFeatures'
48 #if str( $xplots.expPlot ) == "none": 46 #if str( $advanced.advancedFeatures ) == 'none':
49 cplot_p "FALSE" 47 fdr_features 'ALL'
50 cplot_o "FALSE" 48 cplot_p 'FALSE'
51 cplot_y "correlation" 49 cplot_o 'FALSE'
52 #else if str( $xplots.expPlot ) == "cplot": 50 cplot_y 'correlation'
53 cplot_p '$xplots.cplot_p' 51 #else if str( $advanced.advancedFeatures ) == 'advanced':
54 cplot_o '$xplots.cplot_o' 52 fdr_features '$advanced.fdr_features'
55 cplot_y '$xplots.cplot_y' 53 cplot_p '$advanced.cplot_p'
54 cplot_o '$advanced.cplot_o'
55 cplot_y '$advanced.cplot_y'
56 #end if 56 #end if
57 contrast_detail '$contrast_detail' 57 contrast_detail '$contrast_detail'
58 contrast_corcov '$contrast_corcov' 58 contrast_corcov '$contrast_corcov'
59 contrast_salience '$contrast_salience' 59 contrast_salience '$contrast_salience'
60 ]]></command> 60 ]]></command>
61
62 <inputs> 61 <inputs>
63 <param name="dataMatrix_in" format="tabular" label="Data matrix file" type="data" 62 <param name="dataMatrix_in" format="tabular" label="Data matrix file" type="data"
64 help="variables &#10006; samples" /> 63 help="variables &#10006; samples" />
65 <param name="sampleMetadata_in" format="tabular" label="Sample metadata file" type="data" 64 <param name="sampleMetadata_in" format="tabular" label="Sample metadata file" type="data"
66 help="sample metadata, one row per sample" /> 65 help="sample metadata, one row per sample" />
77 <!-- R does not permit dashes in column names; neither does SQL --> 76 <!-- R does not permit dashes in column names; neither does SQL -->
78 </valid> 77 </valid>
79 </sanitizer> 78 </sanitizer>
80 </param> 79 </param>
81 <conditional name="signif_test"> 80 <conditional name="signif_test">
82 <param name="tesC" label="Univariate significance-test" type="select" help="Either 'none' or the name of the statistical test that was run by the 'Univariate' tool to produce the variableMetadata file; that name must also be a portion of the column names in that file."> 81 <param name="tesC" label="Univariate significance-test" type="select" help="Either 'none' or the name of the statistical test that was run by the 'Univariate' tool to produce the variableMetadata file.">
83 <option value="none">none - Display all features from variableMetadata (rather than choosing a subset based on significance in univariate testing)</option> 82 <option value="none">none - Display all features from variableMetadata (rather than choosing a subset based on significance in univariate testing)</option>
84 <option value="ttest">ttest - Student's t-test (parametric test, qualitative factor with exactly 2 levels)</option> 83 <option value="ttest">ttest - Student's t-test (parametric test, qualitative factor with exactly 2 levels)</option>
85 <option value="anova">anova - Analysis of variance (parametric test, qualitative factor with more than 2 levels)</option> 84 <option value="anova">anova - Analysis of variance (parametric test, qualitative factor with more than 2 levels)</option>
86 <option value="wilcoxon">wilcoxon - Wilcoxon rank test (nonparametric test, qualitative factor with exactly 2 levels)</option> 85 <option value="wilcoxon">wilcoxon - Wilcoxon rank test (nonparametric test, qualitative factor with exactly 2 levels)</option>
87 <option value="kruskal">kruskal - Kruskal-Wallis rank test (nonparametric test, qualitative factor with more than 2 levels)</option> 86 <option value="kruskal">kruskal - Kruskal-Wallis rank test (nonparametric test, qualitative factor with more than 2 levels)</option>
99 <when value="kruskal"> 98 <when value="kruskal">
100 <expand macro="paramPairSigFeatOnly" /> 99 <expand macro="paramPairSigFeatOnly" />
101 </when> 100 </when>
102 </conditional> 101 </conditional>
103 <param name="levCSV" type="text" value="*" label="Levels of interest" 102 <param name="levCSV" type="text" value="*" label="Levels of interest"
104 help="Comma-separated level-names (or comma-less regular expressions to match level-names) to consider in analysis; must match at least two levels; levels must be non-numeric; may include wild cards or regular expressions. Note that extra space characters will affect results - 'a,b' is correct, but 'a , b' is not and may fail or give different results."> 103 help="Comma-separated level-names (or comma-separated regular expressions to match level-names) to consider in analysis; must match at least two levels; levels must be non-numeric; may include wild cards or regular expressions. Note that extra space characters will affect results - when 'a,b' is correct, 'a, b' is not equivalent and likely will fail or give different results.">
105 <sanitizer> 104 <sanitizer>
106 <valid initial="string.letters"> 105 <valid initial="string.letters">
107 <add preset="string.digits"/> 106 <add preset="string.digits"/>
108 <add value="&#36;" /> <!-- $ dollar, dollar-sign --> 107 <add value="&#36;" /> <!-- $ dollar, dollar-sign -->
109 <add value="&#40;" /> <!-- ( left-paren --> 108 <add value="&#40;" /> <!-- ( left-paren -->
132 <option value="none">do no generic matching</option> 131 <option value="none">do no generic matching</option>
133 <option value="wildcard" selected="true">use wild-cards for matching level-names (default)</option> 132 <option value="wildcard" selected="true">use wild-cards for matching level-names (default)</option>
134 <option value="regex">use regular expressions for matching level-names</option> 133 <option value="regex">use regular expressions for matching level-names</option>
135 </param> 134 </param>
136 <param name="labelFeatures" type="text" value="3" 135 <param name="labelFeatures" type="text" value="3"
137 label="How many features having extreme loadings should be labelled on cov-vs.-cor plot" 136 label="How many features having extreme loadings should be labelled on cov-vs.-cor plot?"
138 help="Specify the number of features at each of the loading-extremes that should be labelled (with the name of the feature) on the covariance-vs.-correlation plot; specify 'ALL' to label all features or '0' to label no features; this choice has no effect on the OPLS-DA loadings plot."/> 137 help="Specify the number of features at each of the loading-extremes that should be labelled (with the name of the feature) on the covariance-vs.-correlation plot; specify 'ALL' to label all features or '0' to label no features; this choice has no effect on the OPLS-DA loadings plot."/>
139 <conditional name="xplots"> 138 <conditional name="advanced">
140 <param name="expPlot" label="Extra plots to include" type="select" help="Choosing 'none' hides further choices."> 139 <param name="advancedFeatures" type="select"
141 <option value="none">Do not include additonal extra plots.</option> 140 label="Advanced (C-plots and customized p-value adjustment)"
142 <option value="cplot">Include C-plots (predictor-loading vs. 'vip4p' and orthogonal-loading versus 'vip4o')</option> 141 help="Choose 'Do not include ...' to hides further choices.">
142 <option value="advanced">Include C-plots and customize p-value adjustment.</option>
143 <option value="none">Do not include additonal C-plots or customize p-value adjustment.</option>
143 </param> 144 </param>
144 <when value="none" /> 145 <when value="none" />
145 <when value="cplot"> 146 <when value="advanced">
146 <expand macro="cplots" /> 147 <expand macro="cplots" />
147 </when> 148 </when>
148 </conditional> 149 </conditional>
149 </inputs> 150 </inputs>
150 <outputs> 151 <outputs>
151 <!-- 152 <!--
152 pdf1: summaries of each contrasts, clearly labelled by level=pair name 153 pdf1: summaries of each contrasts, clearly labelled by level=pair name
153 * first PCA score-plot 154 * first PCA score-plot
154 * then PLS score-plot 155 * then OPLS score-plot
155 * then PLS S-PLOT; color in red features with VIP > 1; color in grey any non-pairwise-significant features, if these are included 156 * then OPLS S-PLOT; color saturation increases with VIP
157 * then C-plots if requrested
156 --> 158 -->
157 <data name="contrast_detail" format="pdf" label="${tool.name}_${variableMetadata_in.name}_detail" /> 159 <data name="contrast_detail" format="pdf" label="${tool.name}_${variableMetadata_in.name}_detail" />
158 <!-- 160 <!--
159 tsv1: cor and cov table with columns: 161 tsv1: cor and cov table with columns:
160 * feature-ID 162 * feature-ID
184 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/> 186 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/>
185 <param name="tesC" value="kruskal"/> 187 <param name="tesC" value="kruskal"/>
186 <param name="facC" value="k10"/> 188 <param name="facC" value="k10"/>
187 <param name="pairSigFeatOnly" value="FALSE"/> 189 <param name="pairSigFeatOnly" value="FALSE"/>
188 <param name="labelFeatures" value="3"/> 190 <param name="labelFeatures" value="3"/>
191 <param name="fdr_features" value="250"/>
189 <param name="levCSV" value="k[12],k[3-4]"/> 192 <param name="levCSV" value="k[12],k[3-4]"/>
190 <param name="matchingC" value="regex"/> 193 <param name="matchingC" value="regex"/>
191 <output name="contrast_corcov"> 194 <output name="contrast_corcov">
192 <assert_contents> 195 <assert_contents>
193 <!-- column-labels line --> 196 <!-- column-labels line -->
199 <has_text text="vip4p" /> 202 <has_text text="vip4p" />
200 <has_text text="vip4o" /> 203 <has_text text="vip4o" />
201 <has_text text="level1Level2Sig" /> 204 <has_text text="level1Level2Sig" />
202 <!-- first matched line --> 205 <!-- first matched line -->
203 <has_text text="M349.2383T700" /> 206 <has_text text="M349.2383T700" />
204 <has_text text="-0.462909875" /> 207 <has_text text="-0.49037231902" />
205 <has_text text="-36.6668927" /> 208 <has_text text="-2111932280.94" />
206 <has_text text="0.4914638" /> 209 <has_text text="0.4914638" />
207 <has_text text="0.01302117" /> 210 <has_text text="0.01302117" />
211 <has_text text="-0.049216260" />
212 <has_text text="-0.00152098716" />
213 <has_text text="2.0603074801" />
214 <has_text text="-0.60020597" />
215 <has_text text="-0.3623876130" />
208 <!-- second matched line --> 216 <!-- second matched line -->
209 <has_text text="M207.9308T206" /> 217 <has_text text="M207.9308T206" />
210 <has_text text="0.504885262" /> 218 <has_text text="0.504885262" />
211 <has_text text="5.97529097" /> 219 <has_text text="293403792" />
212 <has_text text="0.207196379" /> 220 <has_text text="0.207196379" />
213 <has_text text="0.04438632" /> 221 <has_text text="0.04438632" />
222 <has_text text="0.020749097" />
223 <has_text text="0.005184709" />
224 <has_text text="1.47082346" />
225 <has_text text="2.24325407" />
226 <has_text text="0.38157919" />
227 <has_text text="0.610536188" />
214 </assert_contents> 228 </assert_contents>
215 </output> 229 </output>
216 <output name="contrast_salience"> 230 <output name="contrast_salience">
217 <assert_contents> 231 <assert_contents>
218 <!-- column-labels line --> 232 <!-- column-labels line -->
219 <has_text text="featureID" /> 233 <has_text text="featureID" />
220 <has_text text="salientLevel" /> 234 <has_text text="salientLevel" />
221 <has_text text="salientRCV" /> 235 <has_text text="salienceRCV" />
222 <has_text text="salience" /> 236 <has_text text="salience" />
223 <!-- first matched line --> 237 <!-- first three matched lines -->
224 <has_text text="M349.2383T700" /> 238 <has_text text="M207.0654T373" /><has_text text="k4" /><has_text text="0.822733190" /><has_text text="134.087771" /><has_text text="3.9994434" /><has_text text="207.0654" /><has_text text="373" />
225 <has_text text="0.659554" /> 239 <has_text text="M222.9585T226" /><has_text text="k2" /><has_text text="0.761200229" /><has_text text="87.3672719" /><has_text text="3.9995358" /><has_text text="222.9585" /><has_text text="226" />
226 <has_text text="8.81866595" /> 240 <has_text text="M235.0975T362" /><has_text text="k4" /><has_text text="0.209363850" /><has_text text="77.6255643" /><has_text text="3.99606600" /><has_text text="235.0975" /><has_text text="362" />
227 <!-- second matched line -->
228 <has_text text="M207.9308T206" />
229 <has_text text="0.0578578" />
230 <has_text text="2.27527985" />
231 <!-- third matched line -->
232 <has_text text="M211.0607T263" />
233 <has_text text="9999" />
234 <has_text text="12.87766096" />
235 </assert_contents> 241 </assert_contents>
236 </output> 242 </output>
237 </test> 243 </test>
238 <!-- test #2 --> 244 <!-- test #2 -->
239 <test> 245 <test>
242 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/> 248 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/>
243 <param name="tesC" value="kruskal"/> 249 <param name="tesC" value="kruskal"/>
244 <param name="facC" value="k10"/> 250 <param name="facC" value="k10"/>
245 <param name="pairSigFeatOnly" value="TRUE"/> 251 <param name="pairSigFeatOnly" value="TRUE"/>
246 <param name="labelFeatures" value="3"/> 252 <param name="labelFeatures" value="3"/>
253 <param name="fdr_features" value="ALL"/>
247 <param name="levCSV" value="k[12],k[3-4]"/> 254 <param name="levCSV" value="k[12],k[3-4]"/>
248 <param name="matchingC" value="regex"/> 255 <param name="matchingC" value="regex"/>
249 <output name="contrast_corcov"> 256 <output name="contrast_corcov">
250 <assert_contents> 257 <assert_contents>
251 <!-- column-labels line --> 258 <!-- column-labels line -->
257 <has_text text="vip4p" /> 264 <has_text text="vip4p" />
258 <has_text text="vip4o" /> 265 <has_text text="vip4o" />
259 <has_text text="level1Level2Sig" /> 266 <has_text text="level1Level2Sig" />
260 <!-- first matched line --> 267 <!-- first matched line -->
261 <has_text text="M200.005T296" /> 268 <has_text text="M200.005T296" />
262 <has_text text="-0.28035717" /> 269 <has_text text="0.0050579682" />
263 <has_text text="-3.3573953" /> 270 <has_text text="2607493" />
264 <has_text text="0.1157346" /> 271 <has_text text="0.1157346" />
265 <has_text text="0.0647860" /> 272 <has_text text="0.0647860" />
266 </assert_contents> 273 </assert_contents>
267 </output> 274 </output>
268 <output name="contrast_salience"> 275 <output name="contrast_salience">
269 <assert_contents> 276 <assert_contents>
270 <!-- column-labels line --> 277 <!-- column-labels line -->
271 <has_text text="featureID" /> 278 <has_text text="featureID" />
272 <has_text text="salientLevel" /> 279 <has_text text="salientLevel" />
273 <has_text text="salientRCV" /> 280 <has_text text="salienceRCV" />
274 <has_text text="salience" /> 281 <has_text text="salience" />
275 <!-- first matched line --> 282 <!-- first three matched lines -->
276 <has_text text="M349.2383T700" /> 283 <has_text text="M207.0654T373" /><has_text text="k4" /><has_text text="0.822733190" /><has_text text="134.087771" /><has_text text="3.9994434" /><has_text text="207.0654" /><has_text text="373" />
277 <has_text text="0.659554" /> 284 <has_text text="M222.9585T226" /><has_text text="k2" /><has_text text="0.761200229" /><has_text text="87.3672719" /><has_text text="3.9995358" /><has_text text="222.9585" /><has_text text="226" />
278 <has_text text="8.81866595" /> 285 <has_text text="M235.0975T362" /><has_text text="k4" /><has_text text="0.209363850" /><has_text text="77.6255643" /><has_text text="3.99606600" /><has_text text="235.0975" /><has_text text="362" />
279 <!-- second matched line -->
280 <has_text text="M207.9308T206" />
281 <has_text text="0.0578578" />
282 <has_text text="2.27527985" />
283 <!-- third matched line -->
284 <has_text text="M211.0607T263" />
285 <has_text text="9999" />
286 <has_text text="12.87766096" />
287 </assert_contents> 286 </assert_contents>
288 </output> 287 </output>
289 </test> 288 </test>
290 <!-- test #3 --> 289 <!-- test #3 -->
291 <test> 290 <test>
293 <param name="sampleMetadata_in" value="input_sampleMetadata.tsv"/> 292 <param name="sampleMetadata_in" value="input_sampleMetadata.tsv"/>
294 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/> 293 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/>
295 <param name="tesC" value="none"/> 294 <param name="tesC" value="none"/>
296 <param name="facC" value="k10"/> 295 <param name="facC" value="k10"/>
297 <param name="labelFeatures" value="3"/> 296 <param name="labelFeatures" value="3"/>
297 <param name="fdr_features" value="ALL"/>
298 <param name="levCSV" value="k[12],k[3-4]"/> 298 <param name="levCSV" value="k[12],k[3-4]"/>
299 <param name="matchingC" value="regex"/> 299 <param name="matchingC" value="regex"/>
300 <output name="contrast_corcov"> 300 <output name="contrast_corcov">
301 <assert_contents> 301 <assert_contents>
302 <!-- column-labels line --> 302 <!-- column-labels line -->
307 <has_text text="covariance" /> 307 <has_text text="covariance" />
308 <has_text text="vip4p" /> 308 <has_text text="vip4p" />
309 <has_text text="vip4o" /> 309 <has_text text="vip4o" />
310 <!-- first matched line --> 310 <!-- first matched line -->
311 <has_text text="M349.2383T700" /> 311 <has_text text="M349.2383T700" />
312 <has_text text="-0.4732226665" /> 312 <has_text text="-0.499225" />
313 <has_text text="-37.71066" /> 313 <has_text text="-2135165209" />
314 <has_text text="0.5246766" /> 314 <has_text text="0.5246766" />
315 <has_text text="0.0103341" /> 315 <has_text text="0.0103341" />
316 <!-- second matched line --> 316 <!-- second matched line -->
317 <has_text text="M207.9308T206" /> 317 <has_text text="M207.9308T206" />
318 <has_text text="0.4927151212" /> 318 <has_text text="0.4927151212" />
319 <has_text text="5.86655640" /> 319 <has_text text="284608538" />
320 <has_text text="0.2111623" /> 320 <has_text text="0.2111623" />
321 <has_text text="0.0488654" /> 321 <has_text text="0.0488654" />
322 </assert_contents> 322 </assert_contents>
323 </output> 323 </output>
324 <!-- test #4 -->
325 <output name="contrast_salience"> 324 <output name="contrast_salience">
326 <assert_contents> 325 <assert_contents>
327 <!-- column-labels line --> 326 <!-- column-labels line -->
328 <has_text text="featureID" /> 327 <has_text text="featureID" />
329 <has_text text="salientLevel" /> 328 <has_text text="salientLevel" />
330 <has_text text="salientRCV" /> 329 <has_text text="salienceRCV" />
331 <has_text text="salience" /> 330 <has_text text="salience" />
332 <!-- first matched line --> 331 <!-- first three matched lines -->
333 <has_text text="M349.2383T700" /> 332 <has_text text="M207.0654T373" /><has_text text="k4" /><has_text text="0.822733190" /><has_text text="134.087771" /><has_text text="3.9994434" /><has_text text="207.0654" /><has_text text="373" />
334 <has_text text="0.659554" /> 333 <has_text text="M222.9585T226" /><has_text text="k2" /><has_text text="0.761200229" /><has_text text="87.3672719" /><has_text text="3.9995358" /><has_text text="222.9585" /><has_text text="226" />
335 <has_text text="8.81866595" /> 334 <has_text text="M235.0975T362" /><has_text text="k4" /><has_text text="0.209363850" /><has_text text="77.6255643" /><has_text text="3.99606600" /><has_text text="235.0975" /><has_text text="362" />
336 <!-- second matched line -->
337 <has_text text="M207.9308T206" />
338 <has_text text="0.0578578" />
339 <has_text text="2.27527985" />
340 <!-- third matched line -->
341 <has_text text="M211.0607T263" />
342 <has_text text="9999" />
343 <has_text text="12.87766096" />
344 </assert_contents> 335 </assert_contents>
345 </output> 336 </output>
346 </test> 337 </test>
347 <!-- test #4 --> 338 <!-- test #4 -->
348 <test> 339 <test>
350 <param name="sampleMetadata_in" value="issue1_input_sampleMetadata.tsv"/> 341 <param name="sampleMetadata_in" value="issue1_input_sampleMetadata.tsv"/>
351 <param name="variableMetadata_in" value="issue1_input_variableMetadata.tsv"/> 342 <param name="variableMetadata_in" value="issue1_input_variableMetadata.tsv"/>
352 <param name="tesC" value="none"/> 343 <param name="tesC" value="none"/>
353 <param name="facC" value="tissue_flowering"/> 344 <param name="facC" value="tissue_flowering"/>
354 <param name="labelFeatures" value="3"/> 345 <param name="labelFeatures" value="3"/>
346 <param name="fdr_features" value="ALL"/>
355 <param name="levCSV" value="*"/> 347 <param name="levCSV" value="*"/>
356 <param name="matchingC" value="wildcard"/> 348 <param name="matchingC" value="wildcard"/>
357 <output name="contrast_corcov"> 349 <output name="contrast_corcov">
358 <assert_contents> 350 <assert_contents>
359 <!-- column-labels line --> 351 <!-- column-labels line -->
367 <!-- first matched line --> 359 <!-- first matched line -->
368 <has_text text="NM516T251" /> 360 <has_text text="NM516T251" />
369 <has_text text="flower_yes" /> 361 <has_text text="flower_yes" />
370 <has_text text="other" /> 362 <has_text text="other" />
371 <has_text text="0.3499550705" /> 363 <has_text text="0.3499550705" />
372 <has_text text="0.03526926" /> 364 <has_text text="11.609255" />
373 <has_text text="0.43664386" /> 365 <has_text text="0.43664386" />
374 <has_text text="0.587701897" /> 366 <has_text text="0.587701897" />
375 <has_text text="0.026082688" /> 367 <has_text text="0.026082688" />
376 <has_text text="0.0437742145" /> 368 <has_text text="0.0437742145" />
377 <has_text text="516.0845" /> 369 <has_text text="516.0845" />
381 <output name="contrast_salience"> 373 <output name="contrast_salience">
382 <assert_contents> 374 <assert_contents>
383 <!-- column-labels line --> 375 <!-- column-labels line -->
384 <has_text text="featureID" /> 376 <has_text text="featureID" />
385 <has_text text="salientLevel" /> 377 <has_text text="salientLevel" />
386 <has_text text="salientRCV" /> 378 <has_text text="salienceRCV" />
387 <has_text text="salience" /> 379 <has_text text="salience" />
388 <has_text text="mz" /> 380 <has_text text="mz" />
389 <has_text text="rt" /> 381 <has_text text="rt" />
390 <!-- first matched line --> 382 <!-- first matched line -->
391 <has_text text="PM518T369" /> 383 <has_text text="NM517T428" /><has_text text="flower_yes" /><has_text text="0.02765631" /><has_text text="7.8343993" /><has_text text="1.27813793" /><has_text text="517.121714" /><has_text text="428.306854248" />
392 <has_text text="flower_yes" /> 384 <has_text text="NM517T426_1" /><has_text text="0.0290065" /><has_text text="7.7151305" /><has_text text="1.2758886" /><has_text text="517.09367125" /><has_text text="426.233886719" />
393 <has_text text="0.58655260" /> 385 <has_text text="NM516T284_2" /><has_text text="0.022883902" /><has_text text="7.6379724" /><has_text text="1.25603610" /><has_text text="516.082005177" /><has_text text="283.569198608" />
394 <has_text text="4.414469" />
395 <has_text text="518.1656" />
396 <has_text text="368.59817" />
397 </assert_contents> 386 </assert_contents>
398 </output> 387 </output>
399 </test> 388 </test>
400 <!-- test #5 --> 389 <!-- test #5 -->
401 <test> 390 <test>
403 <param name="sampleMetadata_in" value="issue6_input_sampleMetadata.tsv"/> 392 <param name="sampleMetadata_in" value="issue6_input_sampleMetadata.tsv"/>
404 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/> 393 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/>
405 <param name="tesC" value="none"/> 394 <param name="tesC" value="none"/>
406 <param name="facC" value="k._10"/> 395 <param name="facC" value="k._10"/>
407 <param name="labelFeatures" value="3"/> 396 <param name="labelFeatures" value="3"/>
397 <param name="fdr_features" value="ALL"/>
408 <param name="levCSV" value="k1,k.2"/> 398 <param name="levCSV" value="k1,k.2"/>
409 <param name="matchingC" value="none"/> 399 <param name="matchingC" value="none"/>
410 <output name="contrast_corcov"> 400 <output name="contrast_corcov">
411 <assert_contents> 401 <assert_contents>
412 <!-- column-labels line --> 402 <!-- column-labels line -->
418 <has_text text="vip4p" /> 408 <has_text text="vip4p" />
419 <has_text text="vip4o" /> 409 <has_text text="vip4o" />
420 <!-- first matched line --> 410 <!-- first matched line -->
421 <has_text text="M349.2383T700" /> 411 <has_text text="M349.2383T700" />
422 <has_text text="0.61594030" /> 412 <has_text text="0.61594030" />
423 <has_text text="37.76875778" /> 413 <has_text text="3489481837.9" />
424 <has_text text="0.54672558" /> 414 <has_text text="0.54672558" />
425 <has_text text="0.3920409" /> 415 <has_text text="0.3920409" />
426 <!-- second matched line --> 416 <!-- second matched line -->
427 <has_text text="M207.9308T206" /> 417 <has_text text="M207.9308T206" />
428 <has_text text="-0.89716403" /> 418 <has_text text="-0.89716403" />
429 <has_text text="-6.337903" /> 419 <has_text text="-585563327.7" />
430 <has_text text="0.270297" /> 420 <has_text text="0.270297" />
431 <has_text text="0.037661" /> 421 <has_text text="0.037661" />
432 </assert_contents> 422 </assert_contents>
433 </output> 423 </output>
434 </test> 424 </test>
438 <param name="sampleMetadata_in" value="issue6_input_sampleMetadata.tsv"/> 428 <param name="sampleMetadata_in" value="issue6_input_sampleMetadata.tsv"/>
439 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/> 429 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/>
440 <param name="tesC" value="none"/> 430 <param name="tesC" value="none"/>
441 <param name="facC" value="k._10"/> 431 <param name="facC" value="k._10"/>
442 <param name="labelFeatures" value="3"/> 432 <param name="labelFeatures" value="3"/>
433 <param name="fdr_features" value="ALL"/>
443 <param name="levCSV" value="k_3,k-4"/> 434 <param name="levCSV" value="k_3,k-4"/>
444 <param name="matchingC" value="none"/> 435 <param name="matchingC" value="none"/>
445 <output name="contrast_corcov"> 436 <output name="contrast_corcov">
446 <assert_contents> 437 <assert_contents>
447 <!-- column-labels line --> 438 <!-- column-labels line -->
452 <has_text text="covariance" /> 443 <has_text text="covariance" />
453 <has_text text="vip4p" /> 444 <has_text text="vip4p" />
454 <has_text text="vip4o" /> 445 <has_text text="vip4o" />
455 <!-- first matched line --> 446 <!-- first matched line -->
456 <has_text text="M349.2383T700" /> 447 <has_text text="M349.2383T700" />
457 <has_text text="-0.331230562" /> 448 <has_text text="-0.1221966" />
458 <has_text text="-2.47167915" /> 449 <has_text text="-917311734" />
459 <has_text text="0.0892595" /> 450 <has_text text="0.0304592" />
460 <has_text text="0.0049228872" /> 451 <has_text text="0.104748883" />
452 <has_text text="-0.002736415" />
453 <has_text text="-0.0113968" />
454 <has_text text="0.387723" />
455 <has_text text="-0.3812168081" />
456 <has_text text="0.154611878" />
461 </assert_contents> 457 </assert_contents>
462 </output> 458 </output>
463 </test> 459 </test>
464 <!-- test #7 - issue 8 --> 460 <!-- test #7 - issue 8 -->
465 <test> 461 <test>
467 <param name="sampleMetadata_in" value="issue8_input_sampleMetadata.tsv"/> 463 <param name="sampleMetadata_in" value="issue8_input_sampleMetadata.tsv"/>
468 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/> 464 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/>
469 <param name="tesC" value="none"/> 465 <param name="tesC" value="none"/>
470 <param name="facC" value="k._10"/> 466 <param name="facC" value="k._10"/>
471 <param name="labelFeatures" value="3"/> 467 <param name="labelFeatures" value="3"/>
468 <param name="fdr_features" value="ALL"/>
472 <param name="levCSV" value="k_3,k-4"/> 469 <param name="levCSV" value="k_3,k-4"/>
473 <param name="matchingC" value="none"/> 470 <param name="matchingC" value="none"/>
474 <output name="contrast_corcov"> 471 <output name="contrast_corcov">
475 <assert_contents> 472 <assert_contents>
476 <!-- column-labels line --> 473 <!-- column-labels line -->
482 <has_text text="vip4p" /> 479 <has_text text="vip4p" />
483 <has_text text="vip4o" /> 480 <has_text text="vip4o" />
484 <!-- k1 rejected by levCSV, leaving only k_3 and k-4 --> 481 <!-- k1 rejected by levCSV, leaving only k_3 and k-4 -->
485 <not_has_text text="k1" /> 482 <not_has_text text="k1" />
486 <not_has_text text="other" /> 483 <not_has_text text="other" />
484 <!-- first matched line -->
485 <has_text text="M200.005T296" />
486 <has_text text="-0.1829149760" />
487 <has_text text="-115723402" />
488 <has_text text="0.0892595" />
489 <has_text text="0.00492288" />
490 <has_text text="-0.00801895" />
491 <has_text text="0.0005356178" />
492 <has_text text="0.1848186" />
493 <has_text text="-0.428802311" />
494 <has_text text="0.0882045811" />
487 </assert_contents> 495 </assert_contents>
488 </output> 496 </output>
489 </test> 497 </test>
490 </tests> 498 </tests>
491 <help><![CDATA[ 499 <help><![CDATA[
492 500
493 **Run PLS-DA Contrasts of Univariate Results** 501 **Run OPLS-DA Contrasts of Univariate Results**
494 ---------------------------------------------- 502 -----------------------------------------------
495 503
496 **Author** - Arthur Eschenlauer (University of Minnesota, esch0041@umn.edu) 504 **Author** - Arthur Eschenlauer (University of Minnesota, esch0041@umn.edu)
497 505
498 **Release Notes** - https://github.com/HegemanLab/w4mcorcov_galaxy_wrapper#release-notes 506 **Release Notes** - https://github.com/HegemanLab/w4mcorcov_galaxy_wrapper#release-notes
499 507
500 Motivation 508 Motivation
501 ---------- 509 ----------
502 510
503 OPLS-DA and the SIMCA S-PLOT (Wiklund *et al.*, 2008) may be employed to draw attention to metabolomic features that are potential biomarkers, i.e. features that are potentially useful to discriminate to which class a sample should be assigned (e.g. Sun *et al.*, 2016). Workflow4Metabolomics (W4M, Giacomoni *et al.*, 2014, Guitton *et al.*, 2017) provides a suite of tools for preprocessing and statistical analysis of LC-MS, GC-MS, and NMR metabolomics data; however, it does not (as of release 3.0) include a tool for making the equivalent of an S-PLOT. 511 OPLS-DA and the SIMCA S-PLOT (Wiklund *et al.*, 2008) may be employed to draw attention to metabolomic features that are potential biomarkers, i.e. features that are potentially useful when assigning a sample to one of two classes (e.g. Sun *et al.*, 2016). Workflow4Metabolomics (W4M, Giacomoni *et al.*, 2014, Guitton *et al.*, 2017) provides a suite of tools for preprocessing and statistical analysis of LC-MS, GC-MS, and NMR metabolomics data; however, it does not (as of release 3.2) include a tool for making the equivalent of an S-PLOT.
504 512
505 The S-PLOT is computed from mean-centered, pareto-scaled data. This plot presents the correlation of the first score vector from an OPLS-DA model with the sample-variables used to produce that model versus the covariance of the scores with the sample-variables. For OPLS-DA, the first score vector represents the variation among the sample-variables that is related to the predictor (i.e., the contrasting factor). 513 The S-PLOT is computed from mean-centered, pareto-scaled data. This plot presents the correlation of the first score vector from an OPLS-DA model with the sample-variables used to produce that model versus the covariance of the scores with the sample-variables. For OPLS-DA, the first score vector represents the variation among the sample-variables that is related to the predictor (i.e., the contrasting factor); the second score vector, variation that is orthogonal to the predictor.
506 514
507 The primary aims of this tool are: 515 The primary aims of this tool are:
508 516
509 - To compute and visualize multiple contrasts with OPLS-DA and the covariance vs. correlation plot. 517 - To compute and visualize multiple contrasts with OPLS-DA and the covariance vs. correlation plot.
510 - To write the results to data files for use in further multivariate analysis or visualization. 518 - To write the results to data files for use in further multivariate analysis or visualization.
512 Note: This tool only supports categorical factors with non-numeric level-names. 520 Note: This tool only supports categorical factors with non-numeric level-names.
513 521
514 Description 522 Description
515 ----------- 523 -----------
516 524
517 The purpose of the 'PLS-DA Contrasts' tool is to visualize GC-MS or LC-MS features that are possible biomarkers. 525 The purpose of the 'OPLS-DA Contrasts' tool is to visualize GC-MS or LC-MS features that are possible biomarkers.
518 526
519 The W4M 'Univariate' tool (Th]]>&#233;<![CDATA[venot *et al.*, 2015) adds the results of family-wise corrected pairwise significance-tests as columns of the **variableMetadata** dataset. 527 The W4M 'Univariate' tool (Th]]>&#233;<![CDATA[venot *et al.*, 2015) adds the results of family-wise corrected pairwise significance-tests as columns of the **variableMetadata** dataset.
520 For instance, suppose that you ran Kruskal-Wallis testing for a column named 'cluster' in sampleMetadata that has values 'k1' and 'k2' and at least one other value. 528 For instance, if Kruskal-Wallis testing were perfomred on a column named 'cluster' in sampleMetadata that has values 'k1' and 'k2' and at least one other value:
521 529
522 - A column of variableMetadata would be labelled 'cluster_kruskal_sig' and would have values '1' and '0'; when the samples are grouped by 'cluster', '1' means that there is strong evidence against the hypothesis that there is no difference among the intensities for the feature across all sample-groups. 530 - A column of variableMetadata would be labelled 'cluster_kruskal_sig' and would have values '1' and '0'; when the samples are grouped by 'cluster', '1' means that there is strong evidence against the hypothesis that there is no difference among the intensities for the feature across all sample-groups.
523 - A column of variableMetadata would be labelled 'cluster_kruskal_k1.k2_sig' and would have values '1' and '0', where '1' means that there is significant evidence against the hypothesis that samples from sampleMetadata whose 'cluster' column contains 'k1' or 'k2' have the same intensity for that feature. 531 - A column of variableMetadata would be labelled 'cluster_kruskal_k1.k2_sig' and would have values '1' and '0', where '1' means that there is significant evidence against the hypothesis that samples from sampleMetadata whose 'cluster' column contains 'k1' or 'k2' have the same intensity for that feature.
524 532
525 The 'PLS-DA Contrasts' tool produces graphics and data for OPLS-DA contrasts of feature-intensities between significantly different pairs of factor-levels. For each factor-level, the tool performs a contrast with all other factor-levels combined and then separately with each other factor-level. 533 The 'OPLS-DA Contrasts' tool produces graphics and data for OPLS-DA contrasts of feature-intensities between significantly different pairs of factor-levels. For each factor-level, the tool performs a contrast with all other factor-levels combined and then separately with each other factor-level.
526 534
527 **Along the left-to-right axis, the plots show the supervised projection of the variation explained by the predictor** (i.e., the factor specified when invoking the tool); **the top-to-bottom axis displays the variation that is orthogonal to the predictor level** (i.e., independent of it). 535 **Along the left-to-right axis, the plots show the supervised projection of the variation explained by the predictor** (i.e., the factor specified when invoking the tool); **the top-to-bottom axis displays the variation that is orthogonal to the predictor level** (i.e., independent of it).
528 536
529 Although this tool can be used in a purely exploratory manner by supplying the variableMetadata file without the columns added by the W4M 'Univariate' tool, **the preferred workflow may be to use univariate testing to exclude features that are not significantly different and then to use OPLS-DA to visualize the differences identified in univariate testing** (Th]]>&#233;<![CDATA[venot *et al.*, 2015); an appropriate exception would be to visualize contrasts of a specific list of metabolites. 537 Although this tool can be used in a purely exploratory manner by supplying the variableMetadata file without the columns added by the W4M 'Univariate' tool, **a preferable workflow may be to use univariate testing to exclude features that are not significantly different and then to use OPLS-DA to visualize the differences identified in univariate testing** (Th]]>&#233;<![CDATA[venot *et al.*, 2015); an appropriate exception would be to visualize contrasts of a specific list of metabolites. If you do exclude features, however, make sure that you set the advanced parameter "How many features for p-value calculation?" accordingly.
530 538
531 It must be stressed that there may be no *single* definitive computational approach to select features that are reliable biomarkers, especially from a small number of samples or experiments. A few possible choices are: 539 It must be stressed that there may be no *single* definitive computational approach to select features that are reliable biomarkers, especially from a small number of samples or experiments. A few possible choices are:
532 540
533 - picking features with maximum loadings along the projection parallel to the predictor (loadp), 541 - picking features with maximum loadings along the projection parallel to the predictor (loadp),
534 - examining extreme values on S-PLOTs 542 - examining extreme values on S-PLOTs
535 - examining "variable importance in projection VIP for OPLS-DA" (Galindo-Prieto *et al.* 2014), and 543 - examining "variable importance in projection VIP for OPLS-DA" (Galindo-Prieto *et al.* 2014), and
536 - examining a feature's "selectivity ratio" (Rajalahti *et al.*, 2009). 544 - examining a feature's "selectivity ratio" (Rajalahti *et al.*, 2009).
537 545
538 In this spirit, this tool reports the S-PLOT covariance and correlation (Wiklund *op. cit.*) and VIP metrics, and it introduces an informal "salience" metric to flag features that may merit attention without dimensional reduction; future versions may add selectivity ratio. 546 In this spirit, this tool reports the S-PLOT covariance and correlation (Wiklund *op. cit.*) and VIP metrics, and it introduces an informal "salience" metric to flag features that may merit attention without dimensional reduction; future versions may add selectivity ratio.
539 547
540 For a more systematic approach to biomarker identification, please consider the W4M 'biosigner' tool (Rinuardo *et al.* 2016), which applies three different identification metrics to the selection process. 548 For a more systematic approach to biomarker identification, please consider the W4M 'biosigner' tool (Rinuardo *et al.* 2016), which applies three different identification metrics to the selection process. Regardless of how any potential biomarker is identified, further validation analysis (e.g., independent confirmatory experiments) is needed before it can be recommended for general application.
541
542 Regardless of how any potential biomarker is identified, further validation analysis (e.g., independent confirmatory experiments) is needed before it is recommended for general application.
543 549
544 550
545 W4M Workflow Position 551 W4M Workflow Position
546 --------------------- 552 ---------------------
547 553
548 - Upstream tool: **Univariate** (category: Statistical Analysis) or (not generally recommended) any **Preprocessing** tool that produces or updates a 'variableMetadata' file. 554 - Upstream tool: **Univariate** (category: Statistical Analysis) or any **Preprocessing** tool that produces or updates a 'variableMetadata' file.
549 - Downstream tool categories: **Statistical Analysis** 555 - Downstream tool categories: **Statistical Analysis**
550 556
551 Input files 557 Input files
552 ----------- 558 -----------
553 559
614 620
615 [IN] Label how many extreme features 621 [IN] Label how many extreme features
616 | Specify the number of features at each of the loading-extremes that should be labelled (with the name of the feature) on the covariance-vs.-correlation plot; specify 'ALL' to label all features; this choice has no effect on the OPLS-DA loadings plot. 622 | Specify the number of features at each of the loading-extremes that should be labelled (with the name of the feature) on the covariance-vs.-correlation plot; specify 'ALL' to label all features; this choice has no effect on the OPLS-DA loadings plot.
617 | 623 |
618 624
625 [IN] (Advanced) C-plot Y-axis
626 | Choose whether C-plots should plot the correlation (the default) or the covariance *vs.* VIP.
627 |
628
629 [IN] (Advanced) Produce predictor C-plot
630 | Choose whether a C-plot should be produced for the projections parallel to the predictor.
631 |
632
633 [IN] (Advanced) Produce orthogonal C-plot
634 | Choose whether a C-plot should be produced for the projections orthogonal to the predictor.
635 |
636
637 [IN] (Advanced) How many features for p-value calculation?
638 | You will need to use this option when statistical criteria have previously been applied to remove features in the data matrix. This is important for adjusting the p-values for correlation of the scores with each feature; this adjustment is necessary to avoid underestimation of the p-values. If this is applicable, specify the sum of the number of features removed and the number of features in the data matrix.
639 |
640
619 [OUT] Contrast-detail output PDF 641 [OUT] Contrast-detail output PDF
620 | File containing several plots for each two-projection OPLS-DA analysis. 642 | File containing several plots for each two-projection OPLS-DA analysis.
621 643
622 - (first row, left) **correlation-versus-covariance plot** of OPLS-DA results 644 - (first row, left) **correlation-versus-covariance plot** of OPLS-DA results
623 645
624 - This is a work-alike for the S-PLOT, computed using formula in equations 1 and 2 from Wiklund, (*op. cit.*); 646 - This is a work-alike for the S-PLOT described in Wiklund, (*op. cit.*), ignoring samples with missing values;
625 - point-color becomes saturated as the "variable importance in projection to the predictive components" (VIP\ :subscript:`4,p` from Galindo-Prieto *et al.* 2014) increases through the range from 0.83 and 1.21 (Mehmood *et al.* 2012), for use to identify features for consideration as biomarkers; 647 - point-color becomes saturated as the "variable importance in projection to the predictive components" (VIP\ :subscript:`4,p` from Galindo-Prieto *op. cit.*) ranges from 0.83 and 1.21 (Mehmood *et al.* 2012), for use to identify features for consideration as biomarkers;
626 - plot symbols are diamonds when the adjusted p-value of correlation is greater than 0.05, circles when it is less than 0.01, and triangles when it between these limits. 648 - plot symbols are diamonds when the p-value of the correlation, adjusted for family-wise error rate (Yekutieli *et al.*, 2001), is greater than 0.05, circles when it is less than 0.01, and triangles when between 0.01 and 0.05.
627 - (second row, left) **model-overview plot** for the two projections; grey bars are the correlation coefficient for the fitted data; black bars indicate performance in cross-validation tests (Th]]>&#233;<![CDATA[venot, 2017) 649 - (second row, left) **model-overview plot** for the two projections; grey bars are the correlation coefficient for the fitted data; black bars indicate performance in cross-validation tests (Th]]>&#233;<![CDATA[venot, 2017)
628 - (first row, right) OPLS-DA **scores-plot** for the two projections (Th]]>&#233;<![CDATA[venot *et al.*, 2015) 650 - (first row, right) OPLS-DA **scores-plot** for the two projections (Th]]>&#233;<![CDATA[venot *et al.*, 2015)
629 - (second row, right) **correlation-versus-covariance plot** of OPLS-DA results **orthogonal to the predictor** (see section "S-Plot of Orthogonal Component" in Wiklund, *op. cit.*, pp. 120-121; this characterizes features with the greatest variation independent of the predictor). 651 - (second row, right) **correlation-versus-covariance plot** of OPLS-DA results **orthogonal to the predictor** (see section "S-Plot of Orthogonal Component" in Wiklund, *op. cit.*, pp. 120-121; this characterizes variation of features that is *independent of the predictor*).
630 - (third row, left, when "**predictor C-plot**" is chosen under "Extra plots to include") plot of the covariance or correlation vs. the VIP for the projection *parallel to the predictor*, for use to identify features for consideration as biomarkers. 652 - (third row, left, when "**predictor C-plot**" is chosen under "Advanced") plot of the correlation (or covariance) vs. the VIP\ :subscript:`4,p` (Galindo-Prieto *op. cit.*), to assist in identifying features for consideration as biomarkers.
631 - (third row, right, when "**orthogonal C-plot**" is chosen under "Extra plots to include") plotof the covariance or correlation vs. the VIP for the projection *orthogonal to the predictor*, for use to identify features varying considerably without regard to the predictor. 653 - (third row, right, when "**orthogonal C-plot**" is chosen under "Advanced") plot of the correlation (or covariance) vs. the VIP\ :subscript:`4,o` (*ibid.*), to assist in identifying features varying considerably without regard to the predictor.
632 654
633 [OUT] Contrast Correlation-Covarinace data TABULAR 655 [OUT] Contrast Correlation-Covarinace data TABULAR
634 | A tab-separated values file of metadata for each feature for each contrast in which it was included. 656 | A tab-separated values file of metadata for each feature for each contrast in which it was included.
635 | Thus, a given feature may appear many times, but *the combination of featureID, factorLevel1, and factorLevel2 will be unique.* 657 | Thus, a given feature may appear many times, but *the combination of featureID, factorLevel1, and factorLevel2 will be unique.*
636 | This file has the following columns: 658 | This file has the following columns:
637 659
638 - **featureID** - feature-identifier 660 - **featureID** - feature identifier
639 - **factorLevel1** - factor-level 1 661 - **factorLevel1** - factor-level 1
640 - **factorLevel2** - factor-level 2 (or "other" when contrasting factor-level 1 with all other levels) 662 - **factorLevel2** - factor-level 2 (or "other" when contrasting factor-level 1 with all other levels)
641 - **correlation** - correlation of the features projection explaining the difference between the features, < 0 when intensity for level 1 is greater (from equation 2 in Wiklund, *op. cit.*). Note that, for a given contrast, there is a linear relationship between 'loadp' and 'correlation'. 663 - **correlation**\ (t\ :subscript:`p`,X\ :subscript:`i`) - for this feature (i), correlation of sample intensities for this feature (X\ :subscript:`i`) with the OPLS-DA projection's first set of scores (t\ :subscript:`p`, i.e., the scores explaining the difference between the features), computed (omitting samples missing values) using the R *stats::cor* function with the 'pearson' method (R Core Team, 2018); this is negative when intensity for level 1 is greater than for level 2
642 - **covariance** - relative covariance of the features projection explaining the difference between the features, < 0 when intensity for level 1 is greater (from formula in *ibid.*, but scaled so that the greatest value has a magnitude of 1) 664 - **covariance**\ (t\ :subscript:`p`,X\ :subscript:`i`) - computed as for correlation but using the R *stats::cov* function (*ibid.*) in lieu of *stats::cor*; this is also negative when intensity for level 1 is greater than for level 2
643 - **vip4p** - "variable importance in projection" to the predictive projection, VIP\ :subscript:`4,p` (Galindo-Prieto *op. cit.*) 665 - **vip4p** - "variable importance in projection" to the predictive projection, VIP\ :subscript:`4,p` (Galindo-Prieto *op. cit.*)
644 - **vip4o** - "variable importance in projection" to the orthogonal projection, VIP\ :subscript:`4,o` (*ibid.*) 666 - **vip4o** - "variable importance in projection" to the orthogonal projection, VIP\ :subscript:`4,o` (*ibid.*)
645 - **loadp** - variable loading for the predictive projection (Wiklund *op. cit.*) 667 - **loadp** - variable loading for the predictive projection (Wiklund *op. cit.*)
646 - **loado** - variable loading for the orthogonal projection (*ibid.*) 668 - **loado** - variable loading for the orthogonal projection (*ibid.*)
647 - **cor_p_val_raw** - p-value for Fisher-transformed correlation (Fisher, 1921; Snedecor, 1980; see also https://en.wikipedia.org/wiki/Fisher_transformation), with no family-wise error-rate correction. 669 - **cor_p_val_raw** - p-value for Fisher-transformed correlation (Fisher, 1921; Snedecor, 1980; see also https://en.wikipedia.org/wiki/Fisher_transformation), with no family-wise error-rate correction.
648 - **cor_p_value** - p-value for Fisher-transformed correlation, adjusted for family-wise error rate (Yekutieli *et al.*, 2001). Caveat: any previous selection for features that vary notably by factor level may result in too little adjustment. 670 - **cor_p_value** - p-value for Fisher-transformed correlation, adjusted for family-wise error rate (Yekutieli *et al.*, 2001).
649 - **cor_ci_lower** - lower limit of 95% confidence interval for correlation (see e.g. https://en.wikipedia.org/wiki/Fisher_transformation) 671 - **cor_ci_lower** - lower limit of 95% confidence interval for correlation, based on cor_p_value
650 - **cor_ci_upper** - upper limit of 95% confidence interval for correlation (*ibid.*) 672 - **cor_ci_upper** - upper limit of 95% confidence interval for correlation, based on cor_p_value
651 - **mz** - *m/z* ratio for feature, copied from input variableMetadata 673 - **mz** - *m/z* ratio for feature, copied from input variableMetadata
652 - **rt** - retention time for feature, copied from input variableMetadata 674 - **rt** - retention time for feature, copied from input variableMetadata
653 - **level1Level2Sig** - (Only present when a test other than "none" is chosen) '1' when feature varies significantly across all classes (i.e., not pair-wise); '0' otherwise 675 - **level1Level2Sig** (Only present when a test other than "none" is chosen) - '1' when feature varies significantly across all classes (i.e., not pair-wise); '0' otherwise
654 676
655 [OUT] Feature "Salience" data TABULAR 677 [OUT] Feature "Salience" data TABULAR
656 | Metrics for the "salient level" for each feature, i.e., the level at which the feature is more prominent than any other level. This is *not* at all related to the SIMCA OPLS-DA S-PLOT; rather, it is intended as a potential way to discover features for consideration as potential biomarkers without dimensionally reducting the data. This is a tab-separated values file having the following columns: 678 | Metrics for the "salient level" for each feature, i.e., the level at which the feature is more prominent than any other level. This is *not* at all related to the SIMCA OPLS-DA S-PLOT; rather, it is intended as a potential way to discover features for consideration as potential biomarkers without dimensionally reducting the data. This is a tab-separated values file having the following columns:
657 679
658 - **featureID** - feature identifier 680 - **featureID** - feature identifier
659 - **salientLevel** - salient level, i.e., for the feature, the class-level having the greatest median intensity 681 - **salientLevel** - salient level, i.e., for the feature, the class-level having the greatest median intensity
660 - **salientRCV** - salient robust coefficient of variation, i.e., for the feature, the mean absolute deviation of the intensity for the salient level divided by the median intensity for the salient level 682 - **salienceRCV** - salience robust coefficient of variation, i.e., for the feature, the mean absolute deviation of the intensity for the salient level divided by the median intensity for the salient level
683 - **relativeSalientDistance** - relative salient distance, i.e., for the feature, the distance between the two highest class-level medians divided by the square root of the mean absolute deviations of those two class-level's intensities
661 - **salience** - salience, i.e., for the feature, the median of the class-level having the greatest intensity divided by the mean of the medians for all class-levels 684 - **salience** - salience, i.e., for the feature, the median of the class-level having the greatest intensity divided by the mean of the medians for all class-levels
685 - **mz** - *m/z* ratio for feature, copied from input variableMetadata
686 - **rt** - retention time for feature, copied from input variableMetadata
662 687
663 Wild card patterns to match level-names 688 Wild card patterns to match level-names
664 --------------------------------------- 689 ---------------------------------------
665 690
666 "wild card" patterns may be used to select level-names. 691 "wild card" patterns may be used to select level-names.
742 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+ 767 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+
743 | Level-name matching | use regular expressions for matching level-names | 768 | Level-name matching | use regular expressions for matching level-names |
744 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+ 769 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+
745 | Number of features having extreme loadings | ALL | 770 | Number of features having extreme loadings | ALL |
746 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+ 771 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+
772 | How many features for p-value calculation? | 250 |
773 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+
747 | Output primary table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_corcov.tsv | 774 | Output primary table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_corcov.tsv |
748 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+ 775 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+
749 | Output salience table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_salience.tsv | 776 | Output salience table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_salience.tsv |
750 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+ 777 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------+
751 | Output figures PDF | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_detail.pdf | 778 | Output figures PDF | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_detail.pdf |
766 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+ 793 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+
767 | Level-name matching | use wild cards for matching level-names | 794 | Level-name matching | use wild cards for matching level-names |
768 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+ 795 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+
769 | Number of features having extreme loadings | 5 | 796 | Number of features having extreme loadings | 5 |
770 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+ 797 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+
798 | How many features for p-value calculation? | ALL |
799 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+
771 | Output primary table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_corcov_all.tsv | 800 | Output primary table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_corcov_all.tsv |
772 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+ 801 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+
773 | Output salience table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_salience_all.tsv | 802 | Output salience table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_salience_all.tsv |
774 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+ 803 +--------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+
775 | Output figures PDF | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_detail_all.pdf | 804 | Output figures PDF | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_detail_all.pdf |
788 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+ 817 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
789 | Level-name matching | use regular expressions for matching level-names | 818 | Level-name matching | use regular expressions for matching level-names |
790 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+ 819 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
791 | Number of features having extreme loadings | 0 | 820 | Number of features having extreme loadings | 0 |
792 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+ 821 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
822 | How many features for p-value calculation? | ALL |
823 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
793 | Output primary table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_corcov_global.tsv | 824 | Output primary table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_corcov_global.tsv |
794 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+ 825 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
795 | Output salience table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_salience_global.tsv | 826 | Output salience table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_salience_global.tsv |
796 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+ 827 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
797 | Output figures PDF | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_detail_global.pdf | 828 | Output figures PDF | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_detail_global.pdf |
809 | Levels of interest | low,high | 840 | Levels of interest | low,high |
810 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+ 841 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
811 | Level-name matching | use regular expressions for matching level-names | 842 | Level-name matching | use regular expressions for matching level-names |
812 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+ 843 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
813 | Number of features having extreme loadings | 3 | 844 | Number of features having extreme loadings | 3 |
845 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
846 | How many features for p-value calculation? | ALL |
814 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+ 847 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
815 | Output primary table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_corcov_lohi.tsv | 848 | Output primary table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_corcov_lohi.tsv |
816 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+ 849 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
817 | Output salience table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_salience_lohi.tsv | 850 | Output salience table | https://raw.githubusercontent.com/HegemanLab/w4mcorcov_galaxy_wrapper/master/tools/w4mcorcov/test-data/expected_contrast_salience_lohi.tsv |
818 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+ 851 +--------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------+
828 861
829 ]]></help> 862 ]]></help>
830 <citations> 863 <citations>
831 <!-- this tool --> 864 <!-- this tool -->
832 <citation type="doi">10.5281/zenodo.1034784</citation> 865 <citation type="doi">10.5281/zenodo.1034784</citation>
866 <!-- R project -->
867 <citation type="bibtex"><![CDATA[
868 @Manual{,
869 title = {R: A Language and Environment for Statistical Computing},
870 author = {{R Core Team}},
871 organization = {R Foundation for Statistical Computing},
872 address = {Vienna, Austria},
873 year = {2018},
874 url = {https://www.R-project.org/},
875 }
876 ]]></citation>
833 <!-- Fisher_1921: Fisher z-transformation of correlation coefficient --> 877 <!-- Fisher_1921: Fisher z-transformation of correlation coefficient -->
834 <citation type="bibtex"><![CDATA[ 878 <citation type="bibtex"><![CDATA[
835 @article{Fisher_1921, 879 @article{Fisher_1921,
836 author = {Fisher, R. A.}, 880 author = {Fisher, R. A.},
837 title = {{On the probable error of a coefficient of correlation deduced from a small sample}}, 881 title = {{On the probable error of a coefficient of correlation deduced from a small sample}},
885 doi = {10.18129/B9.bioc.ropls}, 929 doi = {10.18129/B9.bioc.ropls},
886 booktitle = {Bioconductor: Open source software for bioinformatics}, 930 booktitle = {Bioconductor: Open source software for bioinformatics},
887 address = {Roswell Park Cancer Institute}, 931 address = {Roswell Park Cancer Institute},
888 } 932 }
889 ]]></citation> 933 ]]></citation>
890 <!-- Wiklund_2008 OPLS PLS-DA and S-PLOT --> 934 <!-- Wiklund_2008 OPLS-DA and S-PLOT -->
891 <citation type="doi">10.1021/ac0713510</citation> 935 <citation type="doi">10.1021/ac0713510</citation>
892 <!-- Yekutieli_2001 The control of the false discovery rate in multiple testing under dependency --> 936 <!-- Yekutieli_2001 The control of the false discovery rate in multiple testing under dependency -->
893 <citation type="doi">10.1214/aos/1013699998</citation> 937 <citation type="doi">10.1214/aos/1013699998</citation>
894 </citations> 938 </citations>
895 <!-- 939 <!--