comparison w4mcorcov.xml @ 12:ddaf84e15d06 draft

planemo upload for repository https://github.com/HegemanLab/w4mcorcov_galaxy_wrapper/tree/master commit 6775c83b89d9d903c81a2229cdc200fc93538dfe-dirty
author eschen42
date Thu, 08 Nov 2018 23:06:09 -0500
parents ddcc33ff3205
children 2ae2d26e3270
comparison
equal deleted inserted replaced
11:ddcc33ff3205 12:ddaf84e15d06
1 <tool id="w4mcorcov" name="OPLS-DA_Contrasts" version="0.98.15"> 1 <tool id="w4mcorcov" name="OPLS-DA_Contrasts" version="0.98.16">
2 <description>OPLS-DA Contrasts of Univariate Results</description> 2 <description>OPLS-DA Contrasts of Univariate Results</description>
3 <macros> 3 <macros>
4 <xml name="paramPairSigFeatOnly"> 4 <xml name="paramPairSigFeatOnly">
5 <param name="pairSigFeatOnly" type="boolean" checked="true" truevalue="TRUE" falsevalue="FALSE" 5 <param name="pairSigFeatOnly" type="boolean" checked="true" truevalue="TRUE" falsevalue="FALSE"
6 label="Retain only pairwise-significant features" 6 label="Retain only pairwise-significant features"
199 <has_text text="vip4p" /> 199 <has_text text="vip4p" />
200 <has_text text="vip4o" /> 200 <has_text text="vip4o" />
201 <has_text text="level1Level2Sig" /> 201 <has_text text="level1Level2Sig" />
202 <!-- first matched line --> 202 <!-- first matched line -->
203 <has_text text="M349.2383T700" /> 203 <has_text text="M349.2383T700" />
204 <has_text text="-0.3704185" /> 204 <has_text text="-0.462909875" />
205 <has_text text="-36.6668927" /> 205 <has_text text="-36.6668927" />
206 <has_text text="0.4914638" /> 206 <has_text text="0.4914638" />
207 <has_text text="0.01302117" /> 207 <has_text text="0.01302117" />
208 <!-- second matched line --> 208 <!-- second matched line -->
209 <has_text text="M207.9308T206" /> 209 <has_text text="M207.9308T206" />
210 <has_text text="0.3235022" /> 210 <has_text text="0.504885262" />
211 <has_text text="5.97529097" /> 211 <has_text text="5.97529097" />
212 <has_text text="0.207196379" /> 212 <has_text text="0.207196379" />
213 <has_text text="0.04438632" /> 213 <has_text text="0.04438632" />
214 </assert_contents> 214 </assert_contents>
215 </output> 215 </output>
257 <has_text text="vip4p" /> 257 <has_text text="vip4p" />
258 <has_text text="vip4o" /> 258 <has_text text="vip4o" />
259 <has_text text="level1Level2Sig" /> 259 <has_text text="level1Level2Sig" />
260 <!-- first matched line --> 260 <!-- first matched line -->
261 <has_text text="M200.005T296" /> 261 <has_text text="M200.005T296" />
262 <has_text text="-0.24533821" /> 262 <has_text text="-0.28035717" />
263 <has_text text="-3.3573953" /> 263 <has_text text="-3.3573953" />
264 <has_text text="0.1157346" /> 264 <has_text text="0.1157346" />
265 <has_text text="0.0647860" /> 265 <has_text text="0.0647860" />
266 </assert_contents> 266 </assert_contents>
267 </output> 267 </output>
307 <has_text text="covariance" /> 307 <has_text text="covariance" />
308 <has_text text="vip4p" /> 308 <has_text text="vip4p" />
309 <has_text text="vip4o" /> 309 <has_text text="vip4o" />
310 <!-- first matched line --> 310 <!-- first matched line -->
311 <has_text text="M349.2383T700" /> 311 <has_text text="M349.2383T700" />
312 <has_text text="-0.37867079" /> 312 <has_text text="-0.4732226665" />
313 <has_text text="-37.71066" /> 313 <has_text text="-37.71066" />
314 <has_text text="0.5246766" /> 314 <has_text text="0.5246766" />
315 <has_text text="0.0103341" /> 315 <has_text text="0.0103341" />
316 <!-- second matched line --> 316 <!-- second matched line -->
317 <has_text text="M207.9308T206" /> 317 <has_text text="M207.9308T206" />
318 <has_text text="0.31570433" /> 318 <has_text text="0.4927151212" />
319 <has_text text="5.86655640" /> 319 <has_text text="5.86655640" />
320 <has_text text="0.2111623" /> 320 <has_text text="0.2111623" />
321 <has_text text="0.0488654" /> 321 <has_text text="0.0488654" />
322 </assert_contents> 322 </assert_contents>
323 </output> 323 </output>
366 <has_text text="vip4o" /> 366 <has_text text="vip4o" />
367 <!-- first matched line --> 367 <!-- first matched line -->
368 <has_text text="NM516T251" /> 368 <has_text text="NM516T251" />
369 <has_text text="flower_yes" /> 369 <has_text text="flower_yes" />
370 <has_text text="other" /> 370 <has_text text="other" />
371 <has_text text="0.03402807" /> 371 <has_text text="0.3499550705" />
372 <has_text text="0.03526926" /> 372 <has_text text="0.03526926" />
373 <has_text text="0.43664386" /> 373 <has_text text="0.43664386" />
374 <has_text text="0.587701897" /> 374 <has_text text="0.587701897" />
375 <has_text text="0.026082688" /> 375 <has_text text="0.026082688" />
376 <has_text text="0.0437742145" /> 376 <has_text text="0.0437742145" />
417 <has_text text="covariance" /> 417 <has_text text="covariance" />
418 <has_text text="vip4p" /> 418 <has_text text="vip4p" />
419 <has_text text="vip4o" /> 419 <has_text text="vip4o" />
420 <!-- first matched line --> 420 <!-- first matched line -->
421 <has_text text="M349.2383T700" /> 421 <has_text text="M349.2383T700" />
422 <has_text text="0.43361563" /> 422 <has_text text="0.61594030" />
423 <has_text text="37.76875778" /> 423 <has_text text="37.76875778" />
424 <has_text text="0.54672558" /> 424 <has_text text="0.54672558" />
425 <has_text text="0.3920409" /> 425 <has_text text="0.3920409" />
426 <!-- second matched line --> 426 <!-- second matched line -->
427 <has_text text="M207.9308T206" /> 427 <has_text text="M207.9308T206" />
428 <has_text text="-0.3365475" /> 428 <has_text text="-0.89716403" />
429 <has_text text="-6.337903" /> 429 <has_text text="-6.337903" />
430 <has_text text="0.270297" /> 430 <has_text text="0.270297" />
431 <has_text text="0.037661" /> 431 <has_text text="0.037661" />
432 </assert_contents> 432 </assert_contents>
433 </output> 433 </output>
452 <has_text text="covariance" /> 452 <has_text text="covariance" />
453 <has_text text="vip4p" /> 453 <has_text text="vip4p" />
454 <has_text text="vip4o" /> 454 <has_text text="vip4o" />
455 <!-- first matched line --> 455 <!-- first matched line -->
456 <has_text text="M349.2383T700" /> 456 <has_text text="M349.2383T700" />
457 <has_text text="-0.0435663" /> 457 <has_text text="-0.331230562" />
458 <has_text text="-1.9068114" /> 458 <has_text text="-2.47167915" />
459 <has_text text="0.0304592" /> 459 <has_text text="0.0892595" />
460 <has_text text="0.104748883" /> 460 <has_text text="0.0049228872" />
461 </assert_contents> 461 </assert_contents>
462 </output> 462 </output>
463 </test> 463 </test>
464 <!-- test #6 - issue 8 --> 464 <!-- test #7 - issue 8 -->
465 <test> 465 <test>
466 <param name="dataMatrix_in" value="input_dataMatrix.tsv"/> 466 <param name="dataMatrix_in" value="input_dataMatrix.tsv"/>
467 <param name="sampleMetadata_in" value="issue8_input_sampleMetadata.tsv"/> 467 <param name="sampleMetadata_in" value="issue8_input_sampleMetadata.tsv"/>
468 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/> 468 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/>
469 <param name="tesC" value="none"/> 469 <param name="tesC" value="none"/>
493 **Run PLS-DA Contrasts of Univariate Results** 493 **Run PLS-DA Contrasts of Univariate Results**
494 ---------------------------------------------- 494 ----------------------------------------------
495 495
496 **Author** - Arthur Eschenlauer (University of Minnesota, esch0041@umn.edu) 496 **Author** - Arthur Eschenlauer (University of Minnesota, esch0041@umn.edu)
497 497
498 **Release Notes** - https://github.com/HegemanLab/w4mcorcov_galaxy_wrapper#release-notes
498 499
499 Motivation 500 Motivation
500 ---------- 501 ----------
501 502
502 OPLS-DA and the SIMCA S-PLOT (Wiklund *et al.*, 2008) may be employed to draw attention to metabolomic features that are potential biomarkers, i.e. features that are potentially useful to discriminate to which class a sample should be assigned (e.g. Sun *et al.*, 2016). Workflow4Metabolomics (W4M, Giacomoni *et al.*, 2014, Guitton *et al.*, 2017) provides a suite of tools for preprocessing and statistical analysis of LC-MS, GC-MS, and NMR metabolomics data; however, it does not (as of release 3.0) include a tool for making the equivalent of an S-PLOT. 503 OPLS-DA and the SIMCA S-PLOT (Wiklund *et al.*, 2008) may be employed to draw attention to metabolomic features that are potential biomarkers, i.e. features that are potentially useful to discriminate to which class a sample should be assigned (e.g. Sun *et al.*, 2016). Workflow4Metabolomics (W4M, Giacomoni *et al.*, 2014, Guitton *et al.*, 2017) provides a suite of tools for preprocessing and statistical analysis of LC-MS, GC-MS, and NMR metabolomics data; however, it does not (as of release 3.0) include a tool for making the equivalent of an S-PLOT.
614 [IN] Label how many extreme features 615 [IN] Label how many extreme features
615 | Specify the number of features at each of the loading-extremes that should be labelled (with the name of the feature) on the covariance-vs.-correlation plot; specify 'ALL' to label all features; this choice has no effect on the OPLS-DA loadings plot. 616 | Specify the number of features at each of the loading-extremes that should be labelled (with the name of the feature) on the covariance-vs.-correlation plot; specify 'ALL' to label all features; this choice has no effect on the OPLS-DA loadings plot.
616 | 617 |
617 618
618 [OUT] Contrast-detail output PDF 619 [OUT] Contrast-detail output PDF
619 | Several plots for each two-projection OPLS-DA analysis: 620 | File containing several plots for each two-projection OPLS-DA analysis.
620 621
621 - (first row, left) **correlation-versus-covariance plot** of OPLS-DA results (a work-alike for the S-PLOT, computed using formula in Supplement to Wiklund, *op. cit.*); point-color becomes saturated as the "variable importance in projection to the predictive components" (VIP\ :subscript:`4,p` from Galindo-Prieto *et al.* 2014) ranges from 0.83 and 1.21 (Mehmood *et al.* 2012), for use to identify features for consideration as biomarkers. 622 - (first row, left) **correlation-versus-covariance plot** of OPLS-DA results
623
624 - This is a work-alike for the S-PLOT, computed using formula in equations 1 and 2 from Wiklund, (*op. cit.*);
625 - point-color becomes saturated as the "variable importance in projection to the predictive components" (VIP\ :subscript:`4,p` from Galindo-Prieto *et al.* 2014) increases through the range from 0.83 and 1.21 (Mehmood *et al.* 2012), for use to identify features for consideration as biomarkers;
626 - plot symbols are diamonds when the adjusted p-value of correlation is greater than 0.05, circles when it is less than 0.01, and triangles when it between these limits.
622 - (second row, left) **model-overview plot** for the two projections; grey bars are the correlation coefficient for the fitted data; black bars indicate performance in cross-validation tests (Th]]>&#233;<![CDATA[venot, 2017) 627 - (second row, left) **model-overview plot** for the two projections; grey bars are the correlation coefficient for the fitted data; black bars indicate performance in cross-validation tests (Th]]>&#233;<![CDATA[venot, 2017)
623 - (first row, right) OPLS-DA **scores-plot** for the two projections (Th]]>&#233;<![CDATA[venot *et al.*, 2015) 628 - (first row, right) OPLS-DA **scores-plot** for the two projections (Th]]>&#233;<![CDATA[venot *et al.*, 2015)
624 - (second row, right) **correlation-versus-covariance plot** of OPLS-DA results **orthogonal to the predictor** (see section "S-Plot of Orthogonal Component" in Wiklund, *op. cit.*, pp. 120-121; this characterizes features with the greatest variation independent of the predictor). 629 - (second row, right) **correlation-versus-covariance plot** of OPLS-DA results **orthogonal to the predictor** (see section "S-Plot of Orthogonal Component" in Wiklund, *op. cit.*, pp. 120-121; this characterizes features with the greatest variation independent of the predictor).
625 - (third row, left, when "**predictor C-plot**" is chosen under "Extra plots to include") plot of the covariance or correlation vs. the VIP for the projection *parallel to the predictor*, for use to identify features for consideration as biomarkers. 630 - (third row, left, when "**predictor C-plot**" is chosen under "Extra plots to include") plot of the covariance or correlation vs. the VIP for the projection *parallel to the predictor*, for use to identify features for consideration as biomarkers.
626 - (third row, right, when "**orthogonal C-plot**" is chosen under "Extra plots to include") plotof the covariance or correlation vs. the VIP for the projection *orthogonal to the predictor*, for use to identify features varying considerably without regard to the predictor. 631 - (third row, right, when "**orthogonal C-plot**" is chosen under "Extra plots to include") plotof the covariance or correlation vs. the VIP for the projection *orthogonal to the predictor*, for use to identify features varying considerably without regard to the predictor.
631 | This file has the following columns: 636 | This file has the following columns:
632 637
633 - **featureID** - feature-identifier 638 - **featureID** - feature-identifier
634 - **factorLevel1** - factor-level 1 639 - **factorLevel1** - factor-level 1
635 - **factorLevel2** - factor-level 2 (or "other" when contrasting factor-level 1 with all other levels) 640 - **factorLevel2** - factor-level 2 (or "other" when contrasting factor-level 1 with all other levels)
636 - **correlation** - correlation of the features projection explaining the difference between the features, < 0 when intensity for level 1 is greater (from formula in Supplement to Wiklund, *op. cit.*). Note that, for a given contrast, there is a linear relationship between 'loadp' and 'correlation'. 641 - **correlation** - correlation of the features projection explaining the difference between the features, < 0 when intensity for level 1 is greater (from equation 2 in Wiklund, *op. cit.*). Note that, for a given contrast, there is a linear relationship between 'loadp' and 'correlation'.
637 - **covariance** - covariance of the features projection explaining the difference between the features, < 0 when intensity for level 1 is greater (from formula in *ibid.*) 642 - **covariance** - relative covariance of the features projection explaining the difference between the features, < 0 when intensity for level 1 is greater (from formula in *ibid.*, but scaled so that the greatest value has a magnitude of 1)
638 - **vip4p** - "variable importance in projection" to the predictive projection, VIP\ :subscript:`4,p` (Galindo-Prieto *op. cit.*) 643 - **vip4p** - "variable importance in projection" to the predictive projection, VIP\ :subscript:`4,p` (Galindo-Prieto *op. cit.*)
639 - **vip4o** - "variable importance in projection" to the orthogonal projection, VIP\ :subscript:`4,o` (*ibid.*) 644 - **vip4o** - "variable importance in projection" to the orthogonal projection, VIP\ :subscript:`4,o` (*ibid.*)
640 - **loadp** - variable loading for the predictive projection (Wiklund *op. cit.*) 645 - **loadp** - variable loading for the predictive projection (Wiklund *op. cit.*)
641 - **loado** - variable loading for the orthogonal projection (*ibid.*) 646 - **loado** - variable loading for the orthogonal projection (*ibid.*)
647 - **cor_p_val_raw** - p-value for Fisher-transformed correlation (Fisher, 1921; Snedecor, 1980; see also https://en.wikipedia.org/wiki/Fisher_transformation), with no family-wise error-rate correction.
648 - **cor_p_value** - p-value for Fisher-transformed correlation, adjusted for family-wise error rate (Yekutieli *et al.*, 2001). Caveat: any previous selection for features that vary notably by factor level may result in too little adjustment.
649 - **cor_ci_lower** - lower limit of 95% confidence interval for correlation (see e.g. https://en.wikipedia.org/wiki/Fisher_transformation)
650 - **cor_ci_upper** - upper limit of 95% confidence interval for correlation (*ibid.*)
651 - **mz** - *m/z* ratio for feature, copied from input variableMetadata
652 - **rt** - retention time for feature, copied from input variableMetadata
642 - **level1Level2Sig** - (Only present when a test other than "none" is chosen) '1' when feature varies significantly across all classes (i.e., not pair-wise); '0' otherwise 653 - **level1Level2Sig** - (Only present when a test other than "none" is chosen) '1' when feature varies significantly across all classes (i.e., not pair-wise); '0' otherwise
643 654
644 [OUT] Feature "Salience" data TABULAR 655 [OUT] Feature "Salience" data TABULAR
645 | Metrics for the "salient level" for each feature, i.e., the level at which the feature is more prominent than any other level. This is *not* at all related to the SIMCA OPLS-DA S-PLOT; rather, it is intended as a potential way to discover features for consideration as potential biomarkers without dimensionally reducting the data. This is a tab-separated values file having the following columns: 656 | Metrics for the "salient level" for each feature, i.e., the level at which the feature is more prominent than any other level. This is *not* at all related to the SIMCA OPLS-DA S-PLOT; rather, it is intended as a potential way to discover features for consideration as potential biomarkers without dimensionally reducting the data. This is a tab-separated values file having the following columns:
646 657
817 828
818 ]]></help> 829 ]]></help>
819 <citations> 830 <citations>
820 <!-- this tool --> 831 <!-- this tool -->
821 <citation type="doi">10.5281/zenodo.1034784</citation> 832 <citation type="doi">10.5281/zenodo.1034784</citation>
833 <!-- Fisher_1921: Fisher z-transformation of correlation coefficient -->
834 <citation type="bibtex"><![CDATA[
835 @article{Fisher_1921,
836 author = {Fisher, R. A.},
837 title = {{On the probable error of a coefficient of correlation deduced from a small sample}},
838 journal = {Metron},
839 year = {1921},
840 volume = {1},
841 pages = {3--32},
842 note = {Defines the Fisher z-transformation of a coefficient of correlation. Citation adapted from http://www.citeulike.org/group/894/article/2344770},
843 url = {https://digital.library.adelaide.edu.au/dspace/bitstream/2440/15169/1/14.pdf},
844 }
845 ]]></citation>
822 <!-- Galindo_Prieto_2014 Variable influence on projection (VIP) for OPLS --> 846 <!-- Galindo_Prieto_2014 Variable influence on projection (VIP) for OPLS -->
823 <citation type="doi">10.1002/cem.2627</citation> 847 <citation type="doi">10.1002/cem.2627</citation>
824 <!-- Giacomoni_2014 W4M 2.5 --> 848 <!-- Giacomoni_2014 W4M 2.5 -->
825 <citation type="doi">10.1093/bioinformatics/btu813</citation> 849 <citation type="doi">10.1093/bioinformatics/btu813</citation>
826 <!-- Guitton_2017 W4M 3.0 --> 850 <!-- Guitton_2017 W4M 3.0 -->
831 <citation type="doi">10.1016/j.chemolab.2008.08.004</citation> 855 <citation type="doi">10.1016/j.chemolab.2008.08.004</citation>
832 <!-- Rinuardo 2016 --> 856 <!-- Rinuardo 2016 -->
833 <citation type="doi">10.3389/fmolb.2016.00026</citation> 857 <citation type="doi">10.3389/fmolb.2016.00026</citation>
834 <!-- Sun_2016 Urinary Biomarkers for adolescent idiopathic scoliosis --> 858 <!-- Sun_2016 Urinary Biomarkers for adolescent idiopathic scoliosis -->
835 <citation type="doi">10.1038/srep22274</citation> 859 <citation type="doi">10.1038/srep22274</citation>
860 <!-- Snedecor_1980: Fisher z-transformation of correlation coefficient -->
861 <citation type="bibtex"><![CDATA[
862 @book{Snedecor_1980,
863 author = {Snedecor, George W. and Cochran, William G.},
864 title = {Statistical methods},
865 publisher = {Iowa State University Press},
866 year = {1980},
867 pages = {186},
868 isbn = {0813815606},
869 language = {eng},
870 keyword = {Statistics, Statistics as Topic -- methods},
871 lccn = {80014582},
872 edition = {7th ed..},
873 address = {Ames, Iowa},
874 }
875 ]]></citation>
836 <!-- Thevenot_2015 Urinary metabolome statistics --> 876 <!-- Thevenot_2015 Urinary metabolome statistics -->
837 <citation type="doi">10.1021/acs.jproteome.5b00354</citation> 877 <citation type="doi">10.1021/acs.jproteome.5b00354</citation>
838 <!-- ropls package --> 878 <!-- ropls package -->
839 <citation type="bibtex"><![CDATA[ 879 <citation type="bibtex"><![CDATA[
840 @incollection{Thevenot_ropls_2017, 880 @incollection{Thevenot_ropls_2017,
847 address = {Roswell Park Cancer Institute}, 887 address = {Roswell Park Cancer Institute},
848 } 888 }
849 ]]></citation> 889 ]]></citation>
850 <!-- Wiklund_2008 OPLS PLS-DA and S-PLOT --> 890 <!-- Wiklund_2008 OPLS PLS-DA and S-PLOT -->
851 <citation type="doi">10.1021/ac0713510</citation> 891 <citation type="doi">10.1021/ac0713510</citation>
892 <!-- Yekutieli_2001 The control of the false discovery rate in multiple testing under dependency -->
893 <citation type="doi">10.1214/aos/1013699998</citation>
852 </citations> 894 </citations>
853 <!-- 895 <!--
854 vim:et:sw=4:ts=4 896 vim:et:sw=4:ts=4
855 --> 897 -->
856 </tool> 898 </tool>