Mercurial > repos > eschen42 > w4mcorcov
view w4mcorcov_calc.R @ 12:ddaf84e15d06 draft
planemo upload for repository https://github.com/HegemanLab/w4mcorcov_galaxy_wrapper/tree/master commit 6775c83b89d9d903c81a2229cdc200fc93538dfe-dirty
author | eschen42 |
---|---|
date | Thu, 08 Nov 2018 23:06:09 -0500 |
parents | ddcc33ff3205 |
children | 2ae2d26e3270 |
line wrap: on
line source
# center with 'colMeans()' - ref: http://gastonsanchez.com/visually-enforced/how-to/2014/01/15/Center-data-in-R/ center_colmeans <- function(x) { xcenter = colMeans(x) x - rep(xcenter, rep.int(nrow(x), ncol(x))) } #### OPLS-DA algoC <- "nipals" do_detail_plot <- function( x_dataMatrix , x_predictor , x_is_match , x_algorithm , x_prefix , x_show_labels , x_progress = print , x_env , x_crossval_i ) { off <- function(x) if (x_show_labels == "0") 0 else x if ( x_is_match && ncol(x_dataMatrix) > 0 && length(unique(x_predictor))> 1 && x_crossval_i < nrow(x_dataMatrix) ) { my_oplsda <- opls( x = x_dataMatrix , y = x_predictor , algoC = x_algorithm , predI = 1 , orthoI = if (ncol(x_dataMatrix) > 1) 1 else 0 , printL = FALSE , plotL = FALSE , crossvalI = x_crossval_i , scaleC = "pareto" # data centered and pareto scaled here only. This line fixes issue #2. ) # strip out variables having negligible variance x_dataMatrix <- x_dataMatrix[,names(my_oplsda@vipVn), drop = FALSE] my_oplsda_suppLs_y_levels <- levels(as.factor(my_oplsda@suppLs$y)) fctr_lvl_1 <- my_oplsda_suppLs_y_levels[1] fctr_lvl_2 <- my_oplsda_suppLs_y_levels[2] do_s_plot <- function( x_env , predictor_projection_x = TRUE , cplot_x = FALSE , cor_vs_cov_x = NULL ) { if (cplot_x) { cplot_y_correlation <- (x_env$cplot_y == "correlation") } if (is.null(cor_vs_cov_x)) { my_cor_vs_cov <- cor_vs_cov( matrix_x = x_dataMatrix , ropls_x = my_oplsda , predictor_projection_x = predictor_projection_x , x_progress ) } else { my_cor_vs_cov <- cor_vs_cov_x } # str(my_cor_vs_cov) if (is.null(my_cor_vs_cov) || sum(!is.na(my_cor_vs_cov$tsv1$covariance)) < 2) { if (is.null(cor_vs_cov_x)) { x_progress("No cor_vs_cov data produced") } plot(x=1, y=1, xaxt="n", yaxt="n", xlab="", ylab="", type="n") text(x=1, y=1, labels="too few covariance data") return(my_cor_vs_cov) } with( my_cor_vs_cov , { min_x <- min(covariance, na.rm = TRUE) max_x <- max(covariance, na.rm = TRUE) lim_x <- max(sapply(X=c(min_x, max_x), FUN=abs)) covariance <- covariance / lim_x lim_x <- 1.2 # "It is generally accepted that a variable should be selected if vj>1, [27–29], # but a proper threshold between 0.83 and 1.21 can yield more relevant variables according to [28]." # (Mehmood 2012 doi:10.1186/1748-7188-6-27) plus_cor <- correlation plus_cov <- covariance cex <- 0.65 which_projection <- if (projection == 1) "t1" else "o1" which_loading <- if (projection == 1) "parallel" else "orthogonal" if (projection == 1) { # predictor-projection vipcp <- pmax(0, pmin(1,(vip4p-0.83)/(1.21-0.83))) if (!cplot_x) { # S-plot predictor-projection my_xlab <- "relative covariance(feature,t1)" my_x <- plus_cov my_ylab <- "correlation(feature,t1)" my_y <- plus_cor } else { # C-plot predictor-projection my_xlab <- "variable importance in predictor-projection" my_x <- vip4p if (cplot_y_correlation) { my_ylab <- "correlation(feature,t1)" my_y <- plus_cor } else { my_ylab <- "relative covariance(feature,t1)" my_y <- plus_cov } } if (cplot_x) { lim_x <- max(my_x, na.rm = TRUE) * 1.1 my_xlim <- c( 0, lim_x + off(0.2) ) } else { my_xlim <- c( -lim_x - off(0.2), lim_x + off(0.2) ) } my_ylim <- c( -1.0 - off(0.2), 1.0 + off(0.2) ) my_load_distal <- loadp my_load_proximal <- loado red <- as.numeric(correlation > 0) * vipcp blue <- as.numeric(correlation < 0) * vipcp alpha <- 0.1 + 0.4 * vipcp red[is.na(red)] <- 0 blue[is.na(blue)] <- 0 alpha[is.na(alpha)] <- 0 my_col <- rgb(blue = blue, red = red, green = 0, alpha = alpha) main_label <- sprintf("%s for level %s versus %s" , x_prefix, fctr_lvl_1, fctr_lvl_2) } else { # orthogonal projection vipco <- pmax(0, pmin(1,(vip4o-0.83)/(1.21-0.83))) if (!cplot_x) { my_xlab <- "relative covariance(feature,to1)" my_x <- -plus_cov } else { my_xlab <- "variable importance in orthogonal projection" my_x <- vip4o } if (!cplot_x) { # S-plot orthogonal projection my_xlim <- c( -lim_x - off(0.2), lim_x + off(0.2) ) my_ylab <- "correlation(feature,to1)" my_y <- plus_cor } else { # C-plot orthogonal projection lim_x <- max(my_x, na.rm = TRUE) * 1.1 my_xlim <- c( 0, lim_x + off(0.2) ) if (cplot_y_correlation) { my_ylab <- "correlation(feature,to1)" my_y <- plus_cor } else { my_ylab <- "relative covariance(feature,to1)" my_y <- plus_cov } } my_ylim <- c( -1.0 - off(0.2), 1.0 + off(0.2) ) my_load_distal <- loado my_load_proximal <- loadp alpha <- 0.1 + 0.4 * vipco alpha[is.na(alpha)] <- 0 my_col <- rgb(blue = 0, red = 0, green = 0, alpha = alpha) main_label <- sprintf( "Features influencing orthogonal projection for %s versus %s" , fctr_lvl_1, fctr_lvl_2) } main_cex <- min(1.0, 46.0/nchar(main_label)) my_feature_label_slant <- -30 # slant feature labels 30 degrees downward my_pch <- sapply(X = cor_p_value, function(x) if (x < 0.01) 16 else if (x < 0.05) 17 else 18) plot( y = my_y , x = my_x , type = "p" , xlim = my_xlim , ylim = my_ylim , xlab = my_xlab , ylab = my_ylab , main = main_label , cex.main = main_cex , cex = cex , pch = my_pch , col = my_col ) low_x <- -0.7 * lim_x high_x <- 0.7 * lim_x if (projection == 1 && !cplot_x) { text(x = low_x, y = -0.05, labels = fctr_lvl_1, col = "blue") text(x = high_x, y = 0.05, labels = fctr_lvl_2, col = "red") } if ( x_show_labels != "0" ) { names(my_load_distal) <- tsv1$featureID names(my_load_proximal) <- tsv1$featureID if ( x_show_labels == "ALL" ) { n_labels <- length(my_load_distal) } else { n_labels <- as.numeric(x_show_labels) } n_labels <- min( n_labels, (1 + length(my_load_distal)) / 2 ) labels_to_show <- c( names(head(sort(my_load_distal),n = n_labels)) , names(tail(sort(my_load_distal),n = n_labels)) ) labels <- unname( sapply( X = tsv1$featureID , FUN = function(x) if( x %in% labels_to_show ) x else "" ) ) x_text_offset <- 0.024 y_text_off <- 0.017 if (!cplot_x) { # S-plot y_text_offset <- if (projection == 1) -y_text_off else y_text_off } else { # C-plot y_text_offset <- sapply( X = (my_y > 0) , FUN = function(x) { if (x) y_text_off else -y_text_off } ) } label_features <- function(x_arg, y_arg, labels_arg, slant_arg) { if (length(labels_arg) > 0) { unique_slant <- unique(slant_arg) if (length(unique_slant) == 1) { text( y = y_arg , x = x_arg + x_text_offset , cex = 0.4 , labels = labels_arg , col = rgb(blue = 0, red = 0, green = 0, alpha = 0.5) # grey semi-transparent labels , srt = slant_arg , adj = 0 # left-justified ) } else { for (slant in unique_slant) { text( y = y_arg[slant_arg == slant] , x = x_arg[slant_arg == slant] + x_text_offset , cex = 0.4 , labels = labels_arg[slant_arg == slant] , col = rgb(blue = 0, red = 0, green = 0, alpha = 0.5) # grey semi-transparent labels , srt = slant , adj = 0 # left-justified ) } } } } if (!cplot_x) { my_slant <- (if (projection == 1) 1 else -1) * my_feature_label_slant } else { my_slant <- sapply( X = (my_y > 0) , FUN = function(x) if (x) 2 else -2 ) * my_feature_label_slant } if (length(my_x) > 1) { label_features( x_arg = my_x [my_x > 0] , y_arg = my_y [my_x > 0] - y_text_offset , labels_arg = labels[my_x > 0] , slant_arg = (if (!cplot_x) -my_slant else (my_slant)) ) if (!cplot_x) { label_features( x_arg = my_x [my_x < 0] , y_arg = my_y [my_x < 0] + y_text_offset , labels_arg = labels[my_x < 0] , slant_arg = my_slant ) } } else { if (!cplot_x) { my_slant <- (if (my_x > 1) -1 else 1) * my_slant my_y_arg = my_y + (if (my_x > 1) -1 else 1) * y_text_offset } else { my_slant <- (if (my_y > 1) -1 else 1) * my_slant my_y_arg = my_y + (if (my_y > 1) -1 else 1) * y_text_offset } label_features( x_arg = my_x , y_arg = my_y_arg , labels_arg = labels , slant_arg = my_slant ) } } } ) return (my_cor_vs_cov) } my_cor_vs_cov <- do_s_plot( x_env = x_env , predictor_projection_x = TRUE , cplot_x = FALSE ) typeVc <- c("correlation", # 1 "outlier", # 2 "overview", # 3 "permutation", # 4 "predict-train", # 5 "predict-test", # 6 "summary", # 7 = c(2,3,4,9) "x-loading", # 8 "x-score", # 9 "x-variance", # 10 "xy-score", # 11 "xy-weight" # 12 ) # [c(3,8,9)] # [c(4,3,8,9)] if ( length(my_oplsda@orthoVipVn) > 0 ) { my_typevc <- typeVc[c(9,3,8)] } else { my_typevc <- c("(dummy)","overview","(dummy)") } my_ortho_cor_vs_cov_exists <- FALSE for (my_type in my_typevc) { if (my_type %in% typeVc) { tryCatch({ if ( my_type != "x-loading" ) { plot( x = my_oplsda , typeVc = my_type , parCexN = 0.4 , parDevNewL = FALSE , parLayL = TRUE , parEllipsesL = TRUE ) if (my_type == "overview") { sub_label <- sprintf("%s versus %s", fctr_lvl_1, fctr_lvl_2) title(sub = sub_label) } } else { my_ortho_cor_vs_cov <- do_s_plot( x_env = x_env , predictor_projection_x = FALSE , cplot_x = FALSE ) my_ortho_cor_vs_cov_exists <- TRUE } }, error = function(e) { x_progress( sprintf( "factor level %s or %s may have only one sample - %s" , fctr_lvl_1 , fctr_lvl_2 , e$message ) ) }) } else { plot(x=1, y=1, xaxt="n", yaxt="n", xlab="", ylab="", type="n") text(x=1, y=1, labels="no orthogonal projection is possible") } } cplot_p <- x_env$cplot_p cplot_o <- x_env$cplot_o if (cplot_p || cplot_o) { if (cplot_p) { do_s_plot( x_env = x_env , predictor_projection_x = TRUE , cplot_x = TRUE , cor_vs_cov_x = my_cor_vs_cov ) did_plots <- 1 } else { did_plots <- 0 } if (cplot_o) { if (my_ortho_cor_vs_cov_exists) { do_s_plot( x_env = x_env , predictor_projection_x = FALSE , cplot_x = TRUE , cor_vs_cov_x = my_ortho_cor_vs_cov ) } else { plot(x=1, y=1, xaxt="n", yaxt="n", xlab="", ylab="", type="n") text(x=1, y=1, labels="no orthogonal projection is possible") } did_plots <- 1 + did_plots } if (did_plots == 1) { plot(x=1, y=1, xaxt="n", yaxt="n", xlab="", ylab="", type="n", fg = "white") } } return (my_cor_vs_cov) } else { return (NULL) } } # S-PLOT and OPLS reference: Wiklund_2008 doi:10.1021/ac0713510 corcov_calc <- function( calc_env , failure_action = stop , progress_action = function(x) { } , corcov_tsv_action = function(t) { } , salience_tsv_action = function(t) { } , extra_plots = c() ) { if ( ! is.environment(calc_env) ) { failure_action("corcov_calc: fatal error - 'calc_env' is not an environment") return ( FALSE ) } if ( ! is.function(corcov_tsv_action) ) { failure_action("corcov_calc: fatal error - 'corcov_tsv_action' is not a function") return ( FALSE ) } if ( ! is.function(salience_tsv_action) ) { failure_action("salience_calc: fatal error - 'salience_tsv_action' is not a function") return ( FALSE ) } # extract parameters from the environment vrbl_metadata <- calc_env$vrbl_metadata vrbl_metadata_names <- vrbl_metadata[,1] smpl_metadata <- calc_env$smpl_metadata data_matrix <- calc_env$data_matrix pairSigFeatOnly <- calc_env$pairSigFeatOnly facC <- calc_env$facC tesC <- calc_env$tesC # extract the levels from the environment originalLevCSV <- levCSV <- calc_env$levCSV # matchingC is one of { "none", "wildcard", "regex" } matchingC <- calc_env$matchingC labelFeatures <- calc_env$labelFeatures # arg/env checking if (!(facC %in% names(smpl_metadata))) { failure_action( sprintf("bad parameter! Factor name '%s' not found in sampleMetadata" , facC)) return ( FALSE ) } mz <- vrbl_metadata$mz names(mz) <- vrbl_metadata$variableMetadata mz_lookup <- function(feature) unname(mz[feature]) rt <- vrbl_metadata$rt names(rt) <- vrbl_metadata$variableMetadata rt_lookup <- function(feature) unname(rt[feature]) # calculate salience_df as data.frame(feature, max_level, max_median, max_rcv, mean_median, salience, salient_rcv) salience_df <- calc_env$salience_df <- w4msalience( data_matrix = data_matrix , sample_class = smpl_metadata[,facC] , failure_action = failure_action ) salience_tsv_action({ my_df <- data.frame( featureID = salience_df$feature , salientLevel = salience_df$max_level , salientRCV = salience_df$salient_rcv , salience = salience_df$salience , mz = mz_lookup(salience_df$feature) , rt = rt_lookup(salience_df$feature) ) my_df[order(-my_df$salience),] }) # transform wildcards to regexen if (matchingC == "wildcard") { # strsplit(x = "hello,wild,world", split = ",") levCSV <- gsub("[.]", "[.]", levCSV) levCSV <- strsplit(x = levCSV, split = ",") levCSV <- sapply(levCSV, utils::glob2rx, trim.tail = FALSE) levCSV <- paste(levCSV, collapse = ",") } # function to determine whether level is a member of levCSV isLevelSelected <- function(lvl) { matchFun <- if (matchingC != "none") grepl else `==` return( Reduce( f = "||" , x = sapply( X = strsplit( x = levCSV , split = "," , fixed = TRUE )[[1]] , FUN = matchFun , lvl ) ) ) } # transpose matrix because ropls matrix is the transpose of XCMS matrix tdm <- t(data_matrix) # Wiklund_2008 centers and pareto-scales data before OPLS-DA S-plot # However, data should be neither centered nor pareto scaled here because ropls::opls does that; this fixes issue #2. # pattern to match column names like k10_kruskal_k4.k3_sig col_pattern <- sprintf('^%s_%s_(.*)[.](.*)_sig$', facC, tesC) # column name like k10_kruskal_sig intersample_sig_col <- sprintf('%s_%s_sig', facC, tesC) # get the facC column from sampleMetadata, dropping to one dimension smpl_metadata_facC <- smpl_metadata[,facC] # allocate a slot in the environment for the contrast_list, each element of which will be a data.frame with this structure: # - feature ID # - value1 # - value2 # - Wiklund_2008 correlation # - Wiklund_2008 covariance # - Wiklund_2008 VIP calc_env$contrast_list <- list() did_plot <- FALSE if (tesC != "none") { # for each column name, extract the parts of the name matched by 'col_pattern', if any the_colnames <- colnames(vrbl_metadata) if ( ! Reduce( f = "||", x = grepl(tesC, the_colnames) ) ) { failure_action( sprintf( "bad parameter! variableMetadata must contain results of W4M Univariate test '%s'." , tesC)) return ( FALSE ) } col_matches <- lapply( X = the_colnames, FUN = function(x) { regmatches( x, regexec(col_pattern, x) )[[1]] } ) ## first contrast each selected level with all other levels combined into one "super-level" ## # process columns matching the pattern level_union <- c() for (i in 1:length(col_matches)) { col_match <- col_matches[[i]] if (length(col_match) > 0) { # it's an actual match; extract the pieces, e.g., k10_kruskal_k4.k3_sig vrbl_metadata_col <- col_match[1] # ^^^^^^^^^^^^^^^^^^^^^ # Column name fctr_lvl_1 <- col_match[2] # ^^ # Factor-level 1 fctr_lvl_2 <- col_match[3] # ^^ # Factor-level 2 # only process this column if both factors are members of lvlCSV is_match <- isLevelSelected(fctr_lvl_1) && isLevelSelected(fctr_lvl_2) if (is_match) { level_union <- c(level_union, col_match[2], col_match[3]) } } } level_union <- unique(sort(level_union)) overall_significant <- 1 == ( if (intersample_sig_col %in% colnames(vrbl_metadata)) { vrbl_metadata[,intersample_sig_col] } else { 1 } ) if ( length(level_union) > 2 ) { chosen_samples <- smpl_metadata_facC %in% level_union chosen_facC <- as.character(smpl_metadata_facC[chosen_samples]) col_selector <- vrbl_metadata_names[ overall_significant ] my_matrix <- tdm[ chosen_samples, col_selector, drop = FALSE ] plot_action <- function(fctr_lvl_1, fctr_lvl_2) { progress_action( sprintf("calculating/plotting contrast of %s vs. %s" , fctr_lvl_1, fctr_lvl_2) ) predictor <- sapply( X = chosen_facC , FUN = function(fac) if ( fac == fctr_lvl_1 ) fctr_lvl_1 else fctr_lvl_2 ) my_cor_cov <- do_detail_plot( x_dataMatrix = my_matrix , x_predictor = predictor , x_is_match = TRUE , x_algorithm = algoC , x_prefix = if (pairSigFeatOnly) { "Significantly contrasting features" } else { "Significant features" } , x_show_labels = labelFeatures , x_progress = progress_action , x_crossval_i = min(7, length(chosen_samples)) , x_env = calc_env ) if ( is.null(my_cor_cov) ) { progress_action("NOTHING TO PLOT") } else { my_tsv <- my_cor_cov$tsv1 my_tsv$mz <- mz_lookup(my_tsv$featureID) my_tsv$rt <- rt_lookup(my_tsv$featureID) my_tsv["level1Level2Sig"] <- vrbl_metadata[ match(my_tsv$featureID, vrbl_metadata_names) , vrbl_metadata_col ] tsv <<- my_tsv corcov_tsv_action(tsv) did_plot <<- TRUE } } if ( length(level_union) != 2 ) { fctr_lvl_2 <- "other" for ( fctr_lvl_1 in level_union[1:length(level_union)] ) { plot_action(fctr_lvl_1, fctr_lvl_2) } } else { plot_action(fctr_lvl_1 = level_union[1], fctr_lvl_2 = level_union[2]) } } if ( length(level_union) > 1 ) { ## next, contrast each selected level with each of the other levels individually ## # process columns matching the pattern for (i in 1:length(col_matches)) { # for each potential match of the pattern col_match <- col_matches[[i]] if (length(col_match) > 0) { # it's an actual match; extract the pieces, e.g., k10_kruskal_k4.k3_sig vrbl_metadata_col <- col_match[1] # ^^^^^^^^^^^^^^^^^^^^^ # Column name fctr_lvl_1 <- col_match[2] # ^^ # Factor-level 1 fctr_lvl_2 <- col_match[3] # ^^ # Factor-level 2 # only process this column if both factors are members of lvlCSV is_match <- isLevelSelected(fctr_lvl_1) && isLevelSelected(fctr_lvl_2) if (is_match) { progress_action( sprintf("calculating/plotting contrast of %s vs. %s." , fctr_lvl_1, fctr_lvl_2 ) ) # choose only samples with one of the two factors for this column chosen_samples <- smpl_metadata_facC %in% c(fctr_lvl_1, fctr_lvl_2) predictor <- smpl_metadata_facC[chosen_samples] # extract only the significantly-varying features and the chosen samples fully_significant <- 1 == vrbl_metadata[,vrbl_metadata_col] * ( if (intersample_sig_col %in% colnames(vrbl_metadata)) { vrbl_metadata[,intersample_sig_col] } else { 1 } ) col_selector <- vrbl_metadata_names[ if ( pairSigFeatOnly ) fully_significant else overall_significant ] my_matrix <- tdm[ chosen_samples, col_selector, drop = FALSE ] my_cor_cov <- do_detail_plot( x_dataMatrix = my_matrix , x_predictor = predictor , x_is_match = is_match , x_algorithm = algoC , x_prefix = if (pairSigFeatOnly) { "Significantly contrasting features" } else { "Significant features" } , x_show_labels = labelFeatures , x_progress = progress_action , x_crossval_i = min(7, length(chosen_samples)) , x_env = calc_env ) if ( is.null(my_cor_cov) ) { progress_action("NOTHING TO PLOT.") } else { tsv <- my_cor_cov$tsv1 tsv$mz <- mz_lookup(tsv$featureID) tsv$rt <- rt_lookup(tsv$featureID) tsv["level1Level2Sig"] <- vrbl_metadata[ match(tsv$featureID, vrbl_metadata_names) , vrbl_metadata_col ] corcov_tsv_action(tsv) did_plot <- TRUE } } else { progress_action( sprintf("skipping contrast of %s vs. %s." , fctr_lvl_1, fctr_lvl_2 ) ) } } } } } else { # tesC == "none" # find all the levels for factor facC in sampleMetadata level_union <- unique(sort(smpl_metadata_facC)) # identify the selected levels for factor facC from sampleMetadata level_include <- sapply(X = level_union, FUN = isLevelSelected) # discard the non-selected levels for factor facC level_union <- level_union[level_include] if ( length(level_union) > 1 ) { if ( length(level_union) > 2 ) { ## pass 1 - contrast each selected level with all other levels combined into one "super-level" ## completed <- c() lapply( X = level_union , FUN = function(x) { fctr_lvl_1 <- x[1] fctr_lvl_2 <- { if ( fctr_lvl_1 %in% completed ) return("DUMMY") # strF(completed) completed <<- c(completed, fctr_lvl_1) setdiff(level_union, fctr_lvl_1) } chosen_samples <- smpl_metadata_facC %in% c(fctr_lvl_1, fctr_lvl_2) fctr_lvl_2 <- "other" if (length(unique(chosen_samples)) < 1) { progress_action( sprintf("Skipping contrast of %s vs. %s; there are no chosen samples." , fctr_lvl_1, fctr_lvl_2) ) } else { chosen_facC <- as.character(smpl_metadata_facC[chosen_samples]) predictor <- sapply( X = chosen_facC , FUN = function(fac) { if ( fac == fctr_lvl_1 ) fctr_lvl_1 else fctr_lvl_2 } ) my_matrix <- tdm[ chosen_samples, , drop = FALSE ] # only process this column if both factors are members of lvlCSV is_match <- isLevelSelected(fctr_lvl_1) if (is_match) { progress_action( sprintf("Calculating/plotting contrast of %s vs. %s" , fctr_lvl_1, fctr_lvl_2) ) my_cor_cov <- do_detail_plot( x_dataMatrix = my_matrix , x_predictor = predictor , x_is_match = is_match , x_algorithm = algoC , x_prefix = "Features" , x_show_labels = labelFeatures , x_progress = progress_action , x_crossval_i = min(7, length(chosen_samples)) , x_env = calc_env ) if ( is.null(my_cor_cov) ) { progress_action("NOTHING TO PLOT...") } else { tsv <- my_cor_cov$tsv1 tsv$mz <- mz_lookup(tsv$featureID) tsv$rt <- rt_lookup(tsv$featureID) corcov_tsv_action(tsv) did_plot <<- TRUE } } else { } } "dummy" # need to return a value; otherwise combn fails with an error } ) } ## pass 2 - contrast each selected level with each of the other levels individually ## completed <- c() utils::combn( x = level_union , m = 2 , FUN = function(x) { fctr_lvl_1 <- x[1] fctr_lvl_2 <- x[2] chosen_samples <- smpl_metadata_facC %in% c(fctr_lvl_1, fctr_lvl_2) if (length(unique(chosen_samples)) < 1) { progress_action( sprintf("Skipping contrast of %s vs. %s. - There are no chosen samples." , fctr_lvl_1, fctr_lvl_2 ) ) } else { chosen_facC <- as.character(smpl_metadata_facC[chosen_samples]) predictor <- chosen_facC my_matrix <- tdm[ chosen_samples, , drop = FALSE ] # only process this column if both factors are members of lvlCSV is_match <- isLevelSelected(fctr_lvl_1) && isLevelSelected(fctr_lvl_2) if (is_match) { progress_action( sprintf("Calculating/plotting contrast of %s vs. %s." , fctr_lvl_1, fctr_lvl_2) ) my_cor_cov <- do_detail_plot( x_dataMatrix = my_matrix , x_predictor = predictor , x_is_match = is_match , x_algorithm = algoC , x_prefix = "Features" , x_show_labels = labelFeatures , x_progress = progress_action , x_crossval_i = min(7, length(chosen_samples)) , x_env = calc_env ) if ( is.null(my_cor_cov) ) { progress_action("NOTHING TO PLOT.....") } else { tsv <- my_cor_cov$tsv1 tsv$mz <- mz_lookup(tsv$featureID) tsv$rt <- rt_lookup(tsv$featureID) corcov_tsv_action(tsv) did_plot <<- TRUE } } else { progress_action( sprintf("Skipping contrast of %s vs. %s." , fctr_lvl_1, fctr_lvl_2 ) ) } } "dummy" # need to return a value; otherwise combn fails with an error } ) } else { progress_action("NOTHING TO PLOT......") } } if (!did_plot) { failure_action( sprintf( "bad parameter! sampleMetadata must have at least two levels of factor '%s' matching '%s'" , facC, originalLevCSV)) return ( FALSE ) } return ( TRUE ) } # Calculate data for correlation-versus-covariance plot # Adapted from: # Wiklund_2008 doi:10.1021/ac0713510 # Galindo_Prieto_2014 doi:10.1002/cem.2627 # https://github.com/HegemanLab/extra_tools/blob/master/generic_PCA.R cor_vs_cov <- function( matrix_x , ropls_x , predictor_projection_x = TRUE , x_progress = print ) { tryCatch({ return( cor_vs_cov_try( matrix_x, ropls_x, predictor_projection_x, x_progress) ) }, error = function(e) { x_progress( sprintf( "cor_vs_cov fatal error - %s" , as.character(e) # e$message ) ) return ( NULL ) }) } cor_vs_cov_try <- function( matrix_x # rows are samples; columns, features , ropls_x # an instance of ropls::opls , predictor_projection_x = TRUE # TRUE for predictor projection; FALSE for orthogonal projection , x_progress = print # function to produce progress and error messages ) { x_class <- class(ropls_x) if ( !( as.character(x_class) == "opls" ) ) { stop( paste( "cor_vs_cov: Expected ropls_x to be of class ropls::opls but instead it was of class " , as.character(x_class) ) ) } if ( !ropls_x@suppLs$algoC == "nipals" ) { # suppLs$algoC - Character: algorithm used - "svd" for singular value decomposition; "nipals" for NIPALS stop( paste( "cor_vs_cov: Expected ropls::opls instance to have been computed by the NIPALS algorithm rather than " , ropls_x@suppLs$algoC ) ) } result <- list() result$projection <- projection <- if (predictor_projection_x) 1 else 2 # I used equations (1) and (2) from Wiklund 2008, doi:10.1021/ac0713510 # (and not from the supplement despite the statement that, for the NIPALS algorithm, # the equations from the supplement should be used) because of the definition of the # Pearson/Galton coefficient of correlation is defined as # $$ # \rho_{X,Y}= \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} # $$ # as described (among other places) on Wikipedia at # https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#For_a_population # The equations in the supplement said to use, for the predictive component t1, # \rho_{t1,X_i}= \frac{\operatorname{cov}(t1,X_i)}{(\operatorname{mag}(t1))(\operatorname{mag}(X_i))} # but the results that I got were dramatically different from published results for S-PLOTs; # perhaps my data are not centered exactly the same way that theirs were. # The correlations calculated here are in agreement with those calculated with the code from # page 22 of https://cran.r-project.org/web/packages/muma/muma.pdf # I did transform covariance to "relative covariance" (relative to the maximum value) # to keep the figures consistent with one another. # count the features (one column for each sample) Nfeatures <- ncol(matrix_x) # count the samples (one row for each sample) Nobservations <- nrow(matrix_x) # a one-dimensional magnitude function (i.e., take the vector norm) vector_norm <- function(one_dimensional) sqrt(sum(one_dimensional * one_dimensional)) # calculate the standard deviation for each feature sd_xi <- sapply(X = 1:Nfeatures, FUN = function(x) sd(matrix_x[,x])) # choose whether to plot the predictive score vector or orthogonal score vector if (predictor_projection_x) score_matrix <- ropls_x@scoreMN else score_matrix <- ropls_x@orthoScoreMN # transpose the score (or orthoscore) vector for use as a premultiplier in covariance calculation score_matrix_transposed <- t(score_matrix) # compute the norm of the vector (i.e., the magnitude) score_matrix_magnitude <- vector_norm(score_matrix) # compute the standard deviation of the vector score_matrix_sd <- sd(score_matrix) # compute the relative covariance of each feature with the score vector result$covariance <- score_matrix_transposed %*% matrix_x / ( score_matrix_magnitude * score_matrix_magnitude ) # compute the correlation of each feature with the score vector result$correlation <- score_matrix_transposed %*% matrix_x / ( (Nobservations - 1) * ( score_matrix_sd * sd_xi ) ) # convert covariance and correlation from one-dimensional matrices to arrays of values, # which are accessed by feature name below p1 <- result$covariance <- result$covariance [ 1, , drop = TRUE ] # x_progress("strF(p1)") # x_progress(strF(p1)) pcorr1 <- result$correlation <- result$correlation[ 1, , drop = TRUE ] # x_progress("pearson strF(pcorr1)") # x_progress(strF(pcorr1)) # x_progress(typeof(pcorr1)) # x_progress(str(pcorr1)) # # this is how to use Spearman correlation instead of pearson # result$spearcor <- sapply( # X = 1:Nfeatures # , FUN = function(i) { # stats::cor( # x = as.vector(score_matrix) # , y = as.vector(matrix_x[,i]) # # , method = "spearman" # , method = "pearson" # ) # } # ) # names(result$spearcor) <- names(p1) # pcorr1 <- result$spearcor # x_progress("spearman strF(pcorr1)") # x_progress(strF(pcorr1)) # x_progress(typeof(pcorr1)) # x_progress(str(pcorr1)) # pcorr1 <- result$correlation <- result$spearcor # correl.ci(r, n, a = 0.05, rho = 0) correl_pci <- lapply( X = 1:Nfeatures , FUN = function(i) correl.ci(r = pcorr1[i], n = Nobservations) ) result$p_value_raw <- sapply( X = 1:Nfeatures , FUN = function(i) correl_pci[[i]]$p.value ) result$p_value_raw[is.na(result$p_value_raw)] <- 0.0 result$ci_lower <- sapply( X = 1:Nfeatures , FUN = function(i) correl_pci[[i]]$CI['lower'] ) result$ci_upper <- sapply( X = 1:Nfeatures , FUN = function(i) correl_pci[[i]]$CI['upper'] ) # extract "variant 4 of Variable Influence on Projection for OPLS" (see Galindo_Prieto_2014, DOI 10.1002/cem.2627) # Length = number of features; labels = feature identifiers. (The same is true for $correlation and $covariance.) result$vip4p <- as.numeric(ropls_x@vipVn) result$vip4o <- as.numeric(ropls_x@orthoVipVn) if (length(result$vip4o) == 0) result$vip4o <- NA # extract the loadings result$loadp <- as.numeric(ropls_x@loadingMN) result$loado <- as.numeric(ropls_x@orthoLoadingMN) # get the level names level_names <- sort(levels(as.factor(ropls_x@suppLs$y))) fctr_lvl_1 <- level_names[1] fctr_lvl_2 <- level_names[2] feature_count <- length(ropls_x@vipVn) result$level1 <- rep.int(x = fctr_lvl_1, times = feature_count) result$level2 <- rep.int(x = fctr_lvl_2, times = feature_count) greaterLevel <- sapply( X = result$correlation , FUN = function(my_corr) tryCatch({ if ( is.nan( my_corr ) ) { NA } else { if ( my_corr < 0 ) fctr_lvl_1 else fctr_lvl_2 } }, error = function(e) { x_progress( sprintf( "cor_vs_cov -> sapply: error - substituting NA - %s" , as.character(e) ) ) NA }) ) # begin fixes for https://github.com/HegemanLab/w4mcorcov_galaxy_wrapper/issues/1 featureID <- names(ropls_x@vipVn) greaterLevel <- greaterLevel[featureID] result$correlation <- result$correlation[featureID] result$covariance <- result$covariance[featureID] # end fixes for https://github.com/HegemanLab/w4mcorcov_galaxy_wrapper/issues/1 # build a data frame to hold the content for the tab-separated values file tsv1 <- data.frame( featureID = featureID , factorLevel1 = result$level1 , factorLevel2 = result$level2 , greaterLevel = greaterLevel , projection = result$projection , correlation = result$correlation , covariance = result$covariance , vip4p = result$vip4p , vip4o = result$vip4o , loadp = result$loadp , loado = result$loado , cor_p_val_raw = result$p_value_raw , cor_p_value = p.adjust(p = result$p_value_raw, method = "BY") , cor_ci_lower = result$ci_lower , cor_ci_upper = result$ci_upper ) rownames(tsv1) <- tsv1$featureID # build the superresult, i.e., the result returned by this function superresult <- list() superresult$projection <- result$projection superresult$covariance <- result$covariance superresult$correlation <- result$correlation superresult$vip4p <- result$vip4p superresult$vip4o <- result$vip4o superresult$loadp <- result$loadp superresult$loado <- result$loado superresult$cor_p_value <- tsv1$cor_p_value superresult$details <- result # remove any rows having NA for covariance or correlation tsv1 <- tsv1[!is.na(tsv1$correlation),] tsv1 <- tsv1[!is.na(tsv1$covariance),] superresult$tsv1 <- tsv1 # # I did not include these but left them commentd out in case future # # consumers of this routine want to use it in currently unanticipated ways # result$superresult <- superresult # result$oplsda <- ropls_x # result$predictor <- ropls_x@suppLs$y return (superresult) } # Code for correl.ci was adapted from correl function from: # @book{ # Tsagris_2018, # author = {Tsagris, Michail}, # year = {2018}, # link = {https://www.researchgate.net/publication/324363311_Multivariate_data_analysis_in_R}, # title = {Multivariate data analysis in R} # } # which follows # https://en.wikipedia.org/wiki/Fisher_transformation#Definition correl.ci <- function(r, n, a = 0.05, rho = 0) { ## r is the calculated correlation coefficient for n pairs ## a is the significance level ## rho is the hypothesised correlation zh0 <- atanh(rho) # 0.5*log((1+rho)/(1-rho)), i.e., Fisher's z-transformation for Ho zh1 <- atanh(r) # 0.5*log((1+r)/(1-r)), i.e., Fisher's z-transformation for H1 se <- (1 - r^2)/sqrt(n - 3) ## standard error for Fisher's z-transformation of Ho test <- (zh1 - zh0)/se ### test statistic pvalue <- 2*(1 - pnorm(abs(test))) ## p-value zL <- zh1 - qnorm(1 - a/2)*se zH <- zh1 + qnorm(1 - a/2)*se fishL <- tanh(zL) # (exp(2*zL)-1)/(exp(2*zL)+1), i.e., lower confidence limit fishH <- tanh(zH) # (exp(2*zH)-1)/(exp(2*zH)+1), i.e., upper confidence limit CI <- c(fishL, fishH) names(CI) <- c('lower', 'upper') list(correlation = r, p.value = pvalue, CI = CI) } # vim: sw=2 ts=2 et :