Mercurial > repos > eschen42 > w4mkmeans
comparison w4mkmeans.xml @ 2:c415b7dc6f37 draft default tip
planemo upload for repository https://github.com/HegemanLab/w4mkmeans_galaxy_wrapper/tree/master commit 3e916537da6bb37e6f3927d7a11e98e0ab6ef5ec
author | eschen42 |
---|---|
date | Mon, 05 Mar 2018 12:40:17 -0500 |
parents | 02cafb660b72 |
children |
comparison
equal
deleted
inserted
replaced
1:02cafb660b72 | 2:c415b7dc6f37 |
---|---|
1 <tool id="w4mkmeans" name="w4mKmeans" version="0.98.3"> | 1 <tool id="w4mkmeans" name="Kmeans for W4m" version="0.98.4"> |
2 <description>Calculate K-means for W4M dataMatrix features or samples</description> | 2 <description>Calculate K-means for W4m dataMatrix features or samples</description> |
3 | 3 |
4 <requirements> | 4 <requirements> |
5 <requirement type="package" version="3.3.2">r-base</requirement> | 5 <requirement type="package" version="3.4.1">r-base</requirement> |
6 <requirement type="package" version="1.1_4">r-batch</requirement> | 6 <requirement type="package" version="1.1_4">r-batch</requirement> |
7 <requirement type="package" version="1.8.0">libssh2</requirement> | |
8 <requirement type="package" version="1.13.2">krb5</requirement> | |
7 </requirements> | 9 </requirements> |
8 | 10 |
9 <stdio> | 11 <stdio> |
10 <exit_code range="1:" level="fatal" /> | 12 <exit_code range="1:" level="fatal" /> |
11 </stdio> | 13 </stdio> |
25 sample_metadata_path '$sampleMetadata_in' | 27 sample_metadata_path '$sampleMetadata_in' |
26 scores_out '$scores_out' | 28 scores_out '$scores_out' |
27 slots "\${GALAXY_SLOTS:-1}" | 29 slots "\${GALAXY_SLOTS:-1}" |
28 variableMetadata_out '$variableMetadata_out' | 30 variableMetadata_out '$variableMetadata_out' |
29 variable_metadata_path '$variableMetadata_in' | 31 variable_metadata_path '$variableMetadata_in' |
30 ; echo exit code $? | |
31 ]]></command> | 32 ]]></command> |
32 | 33 |
33 <inputs> | 34 <inputs> |
34 <param name="dataMatrix_in" label="Data matrix file" type="data" format="tabular" help="variable x sample, decimal: '.', missing: NA, mode: numerical, separator: tab" /> | 35 <param name="dataMatrix_in" label="Data matrix file" type="data" format="tabular" help="Feature (variable) x sample; decimal point: '.'; missing: NA; mode: numerical; separator: tab" /> |
35 <param name="sampleMetadata_in" label="Sample metadata file" type="data" format="tabular" help="sample x metadata columns, separator: tab" /> | 36 <param name="sampleMetadata_in" label="Sample metadata file" type="data" format="tabular" help="Sample x metadata columns; separator: tab" /> |
36 <param name="variableMetadata_in" label="Variable metadata file" type="data" format="tabular" help="variable x metadata columns, separator: tab" /> | 37 <param name="variableMetadata_in" label="Variable (feature) metadata file" type="data" format="tabular" help="Feature (variable) x metadata columns; separator: tab" /> |
37 <param name="categoricalPrefix" label="prefix for cluster names " type="text" value="k" help="[categorical_prefix] Some tools require non-numeric values to discern categorical data; e.g., enter 'k' here to prepend 'k' to cluster numbers in the output; default 'k'." /> | 38 <param name="categoricalPrefix" label="Prefix for cluster names " type="text" value="c" help="String prepended to cluster numbers in output; default 'c'; leave blank for no prefix." /> |
38 <param name="ksamples" label="K value(s) for samples" type="text" value = "0" help="[ksamples] Single K or comma-separated Ks for samples, or 0 for none." /> | 39 <param name="ksamples" label="K value(s) for samples" type="text" value = "0" help="[ksamples] Single K or comma-separated Ks for samples, or 0 for none." /> |
39 <param name="kfeatures" label="K value(s) for features" type="text" value = "0" help="[kfeatures] Single K or comma-separated Ks for features (variables), or 0 for none." /> | 40 <param name="kfeatures" label="K value(s) for features" type="text" value = "0" help="[kfeatures] Single K or comma-separated Ks for features (variables), or 0 for none." /> |
40 <param name="iter_max" label="Max number of iterations" type="text" value = "10" help="[iter_max] The maximum number of iterations allowed; default 10." /> | 41 <param name="iter_max" label="Maximum number of iterations" type="text" value = "20" help="[iter_max] The maximum number of iterations allowed; default 20." /> |
41 <param name="nstart" label="Number of random sets" type="text" value = "1" help="[nstart] How many random sets should be chosen; default 1." /> | 42 <param name="nstart" label="Number of random sets of clusters" type="text" value = "20" help="[nstart] How many random sets of clusters should be chosen initially; default 20." /> |
42 <param name="algorithm" label="Algorithm for clustering" type="select" value = "Hartigan-Wong" help="[algorithm] K-means clustering algorithm, default 'Hartigan-Wong'; alternatives 'Lloyd', 'MacQueen'; 'Forgy' is a synonym for 'Lloyd', see stats::kmeans reference for further info."> | 43 <param name="algorithm" label="Algorithm for clustering" type="select" value = "Hartigan-Wong" help="[algorithm] K-means clustering algorithm, default 'Hartigan-Wong'; <br />alternatives 'Lloyd', 'MacQueen'; 'Forgy' (synonym for 'Lloyd'); see references."> |
43 <option value="Forgy">Forgy</option> | 44 <option value="Forgy">Forgy</option> |
44 <option value="Hartigan-Wong" selected="True">Hartigan-Wong</option> | 45 <option value="Hartigan-Wong" selected="True">Hartigan-Wong</option> |
45 <option value="Lloyd">Lloyd</option> | 46 <option value="Lloyd">Lloyd</option> |
46 <option value="MacQueen">MacQueen</option> | 47 <option value="MacQueen">MacQueen</option> |
47 </param> | 48 </param> |
48 </inputs> | 49 </inputs> |
49 | 50 |
50 <outputs> | 51 <outputs> |
51 <data name="sampleMetadata_out" label="${tool.name}_${sampleMetadata_in.name}" format="tabular" ></data> | 52 <data name="sampleMetadata_out" label="${sampleMetadata_in.name}.kmeans-smpl" format="tabular" ></data> |
52 <data name="variableMetadata_out" label="${tool.name}_${variableMetadata_in.name}" format="tabular" ></data> | 53 <data name="variableMetadata_out" label="${variableMetadata_in.name}.kmeans-vrbl" format="tabular" ></data> |
53 <data name="scores_out" label="${tool.name}_${dataMatrix_in.name}.kmeans" format="tabular" ></data> | 54 <data name="scores_out" label="${dataMatrix_in.name}.kmeans-score" format="tabular" ></data> |
54 </outputs> | 55 </outputs> |
55 | 56 |
56 <tests> | 57 <tests> |
57 <test> | 58 <test> |
58 <param name="dataMatrix_in" value="input_dataMatrix.tsv"/> | 59 <param name="dataMatrix_in" value="input_dataMatrix.tsv"/> |
59 <param name="sampleMetadata_in" value="input_sampleMetadata.tsv"/> | 60 <param name="sampleMetadata_in" value="input_sampleMetadata.tsv"/> |
60 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/> | 61 <param name="variableMetadata_in" value="input_variableMetadata.tsv"/> |
61 <param name="ksamples" value="3,4"/> | 62 <param name="ksamples" value="3,4"/> |
62 <param name="kfeatures" value="5,6,7"/> | 63 <param name="kfeatures" value="5,6,7"/> |
63 <param name="iter_max" value="10"/> | 64 <param name="iter_max" value="20"/> |
64 <param name="nstart" value="1"/> | 65 <param name="nstart" value="20"/> |
65 <param name="algorithm" value="Hartigan-Wong"/> | 66 <param name="algorithm" value="Hartigan-Wong"/> |
66 <output name="scores_out"> | 67 <output name="scores_out"> |
67 <assert_contents> | 68 <assert_contents> |
68 <has_text text="proportion" /> | 69 <has_text text="proportion" /> |
69 <has_text text="0.87482" /> | 70 <has_text text="0.87482" /> |
70 <has_text text="0.89248" /> | 71 <has_text text="0.91765" /> |
71 <has_text text="0.95355" /> | 72 <has_text text="0.95362" /> |
72 <has_text text="0.95673" /> | 73 <has_text text="0.95719" /> |
73 <has_text text="0.95963" /> | 74 <has_text text="0.97966" /> |
74 </assert_contents> | 75 </assert_contents> |
75 </output> | 76 </output> |
76 </test> | 77 </test> |
77 </tests> | 78 </tests> |
78 | 79 |
79 <help> | 80 <help> |
80 <![CDATA[ | 81 <![CDATA[ |
81 | 82 |
83 =========================== | |
84 K-means for W4m data matrix | |
85 =========================== | |
86 | |
82 **Author** - Arthur Eschenlauer (University of Minnesota, esch0041@umn.edu) | 87 **Author** - Arthur Eschenlauer (University of Minnesota, esch0041@umn.edu) |
83 | 88 |
84 --------------------------------------------------------------------------- | 89 **Source Code** - The source code for the w4mkmeans tool is available (from the Hegeman lab github repository) at https://github.com/HegemanLab/w4mkmeans_galaxy_wrapper |
85 | 90 |
86 | 91 **R code used** - The R code invoked by this wrapper is the R kmeans package at https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html |
87 **Source** - The source code for the w4mkmeans tool is available (from the Hegeman lab github repository) at https://github.com/HegemanLab/w4mkmeans_galaxy_wrapper | 92 |
88 | 93 **Tool updates** - See the **NEWS** section at the bottom of this page |
89 **R code used** - The R code invoked by this wrapper is the R 'stats::kmeans' package | |
90 | |
91 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | |
92 | |
93 | |
94 **Tool updates** | |
95 | |
96 See the **NEWS** section at the bottom of this page | |
97 | |
98 --------------------------------------------------- | |
99 | |
100 =========================== | |
101 K-means for W4M data matrix | |
102 =========================== | |
103 | 94 |
104 ----------- | 95 ----------- |
105 Description | 96 Description |
106 ----------- | 97 ----------- |
107 | 98 |
108 Calculate K-means for sample-clusters (or feature-clusters, or both) using W4M dataMatrix (i.e., XCMS-preprocessed data files) as input. | 99 This tool calculate K-means clusters for samples, features, or both using W4m dataMatrix (i.e., XCMS-preprocessed data files) as input and writes the results to new columns in sampleMetadata, variableMetadata, or both. |
109 | 100 |
110 *Please note that XCMS refers to features as 'variables'. This documentation does not use either term consistently.* | 101 - If several, comma-separated K's are supplied, then one column is added for each K. |
111 | 102 - For feature-clustering, each feature is assigned to a cluster such that the feature's response for all samples is closer to the mean of all features for that cluster than to the mean for any other cluster. |
103 - For sample-clustering, each sample is assigned to a cluster such that the sample's response for all features is closer to the mean of all samples for that cluster than to the mean for any other cluster. | |
104 - Clustering is mutually exclusive, **not** hierarchical. | |
105 | |
106 - Hierarchical clustering is available through the W4m Heat Map tool, https://github.com/workflow4metabolomics/heatmap | |
112 | 107 |
113 ----------------- | 108 ----------------- |
114 Workflow Position | 109 Workflow Position |
115 ----------------- | 110 ----------------- |
116 | 111 |
117 - Tool category: Statistical Analysis | 112 - Tool category: Statistical Analysis |
118 - Upstream tool category: Preprocessing | 113 - Upstream tool category: Preprocessing |
119 - Downstream tool categories: Statistical Analysis | 114 - Downstream tool categories: Statistical Analysis |
120 | |
121 | |
122 ---------- | |
123 Motivation | |
124 ---------- | |
125 | |
126 This tool clusters samples, features (variables), or both from the W4M dataMatrix and writes the results to new columns in sampleMetadata, variableMetadata, or both, respectively. | |
127 | |
128 - If several, comma-separated K's are supplied, then one column is added for each K. | |
129 - This clustering is **not** hierarchical; each member of a cluster is not a member of any other cluster. | |
130 - For feature-clustering, each feature is assigned to a cluster such that the feature's response for all samples is closer to the mean of all features for that cluster than to the mean for any other cluster. | |
131 - For sample-clustering, each sample is assigned to a cluster such that the sample's response for all features is closer to the mean of all samples for that cluster than to the mean for any other cluster. | |
132 | |
133 | 115 |
134 ----------- | 116 ----------- |
135 Input files | 117 Input files |
136 ----------- | 118 ----------- |
137 | 119 |
150 Parameters | 132 Parameters |
151 ---------- | 133 ---------- |
152 | 134 |
153 **Data matrix** - input-file dataset | 135 **Data matrix** - input-file dataset |
154 | 136 |
155 - XCMS variable x sample 'dataMatrix' (tabular separated values) file of the numeric data matrix, with . as decimal, and NA for missing values; the table must not contain metadata apart from row and column names; the row and column names must be identical to the rownames of the sample and feature metadata, respectively (see below) | 137 - W4m variable (i.e. feature) x sample 'dataMatrix' (tabular separated values) file of the numeric data matrix, with . as decimal, and NA for missing values; the table must not contain metadata apart from row and column names; the row and column names must be identical to the rownames of the sample and feature metadata, respectively (see below) |
156 | 138 |
157 **Sample metadata** - input-file dataset | 139 **Sample metadata** - input-file dataset |
158 | 140 |
159 - XCMS sample x metadata 'sampleMetadata' (tabular separated values) file of the numeric and/or character sample metadata, with . as decimal and NA for missing values | 141 - W4m sample x metadata 'sampleMetadata' (tabular separated values) file of the numeric and/or character sample metadata, with . as decimal and NA for missing values |
160 | 142 |
161 **Feature metadata** - input-file dataset | 143 **Feature metadata** - input-file dataset |
162 | 144 |
163 - XCMS variable x metadata 'variableMetadata' (tabular separated values) file of the numeric and/or character feature metadata, with . as decimal and NA for missing values | 145 - W4m variable (i.e. feature) x metadata 'variableMetadata' (tabular separated values) file of the numeric and/or character feature metadata, with . as decimal and NA for missing values |
164 | 146 |
165 **kfeatures** - K or K's for features (default = 0) | 147 **Prefix for cluster names** - character(s) to add as prefix to category number (default = 'c') |
166 | 148 |
167 - integer or comma-separated integers ; zero (the default) or less will result in no calculation. | 149 - Some tools treat only non-numeric data as categorical; this prefix ensures that clusters data will be treated as categorical; an empty string is permitted here if desired (and succeeding tools requiring categorical data accept integers). |
168 | 150 |
169 **ksamples** - K or K-range for samples (default = 0) | 151 **K-values for samples** - K or K-range for samples (default = 0) |
170 | 152 |
171 - integer or comma-separated integers ; zero (the default) or less will result in no calculation. | 153 - Integer or comma-separated positive integers ; zero (or less) will result in no calculation. |
172 | 154 |
173 **iter_max** - maximum_iterations (default = 10) | 155 **K-values for features** - K or K's for features (default = 0) |
174 | 156 |
175 - maximum number of iterations per calculation (see https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html). | 157 - Integer or comma-separated positive integers ; zero (or less) will result in no calculation. |
176 | 158 |
177 **nstart** - how many random sets should be chosen (default = 1) | 159 **Maximumn number of iterations** - (default = 20) |
178 | 160 |
179 - maximum number of iterations per calculation (see https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html). | 161 - Maximum number of iterations per calculation (see https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html for further info). |
180 | 162 |
181 **categorical_prefix** - character(s) to add as prefix to category number (default = 'k') | 163 **Number of random sets** - how many random sets should be chosen to start (default = 20) |
182 | 164 |
183 - some tools treat only non-numeric data as categorical; this prefix ('k' by default) ensures that clusters data will be treated as categorical; an empty string is permitted here if desired (and succeeding tools accept integers as categorical data). | 165 - Number of random sets of clusters to be chosen to start calculation (see https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html for further info). |
166 | |
167 **Algorithm** - Algorithm for clustering" (default = Hartigan-Wong) | |
168 | |
169 - K-means clustering algorithm: 'Hartigan-Wong', 'Lloyd', or 'MacQueen'; 'Forgy' is a synonym for 'Lloyd' (see references for further info). | |
184 | 170 |
185 ------------ | 171 ------------ |
186 Output files | 172 Output files |
187 ------------ | 173 ------------ |
188 | 174 |
189 **XCMS sampleMetadata** - (tabular separated values) file identical to the Sample metadata file given as an input argument, excepting one column added for each K | 175 **Sample Metadata** - (tabular separated values) file identical to the Sample metadata file given as an input argument, excepting one column added for each K |
190 | 176 |
191 - **k#** - cluster number for clustering samples with K = # | 177 - **k#** - cluster number for clustering samples with K = # |
192 | 178 |
193 **XCMS variableMetadata** - (tabular separated values) file identical to the Feature metadata file given as an input argument, excepting one column added for each K | 179 **Variable Metadata** - (tabular separated values) file identical to the Feature metadata file given as an input argument, excepting one column added for each K |
194 | 180 |
195 - **k#** - cluster number for clustering features with K = # | 181 - **k#** - cluster number for clustering features with K = # |
196 | 182 |
197 **scores** - (tabular separated values) file with one line for each K. | 183 **scores** - (tabular separated values) file with one line for each K. |
198 | 184 |
199 - **clusterOn** - what was clustered - either 'sample' or 'feature' | 185 - **clusterOn** - what was clustered - either 'sample' or 'feature' |
200 - **k** - the chosen K for clustering | 186 - **k** - the chosen K for clustering |
201 - **totalSS** - total (*between-treatements* plus total of *within-treatements*) sum of squares | 187 - **totalSS** - total (*between-treatements* plus total of *within-treatements*) sum of squares |
202 - **betweenSS** - *between-treatements* sum of squares | 188 - **betweenSS** - *between-treatements* sum of squares |
203 - **proportion** - betweenSS / totalSS | 189 - **proportion** - betweenSS / totalSS |
204 | 190 |
205 --------------- | 191 --------------- |
206 Working example | 192 Working example |
207 --------------- | 193 --------------- |
208 | 194 |
195 .. class:: infomark | |
196 | |
209 **Input files** | 197 **Input files** |
210 | 198 |
211 +-------------------+-------------------------------------------------------------------------------------------------------------------+ | 199 +-------------------------------------------------------------------------------------------------------------------+ |
212 | Input File | Download from URL | | 200 | URL | |
213 +===================+===================================================================================================================+ | 201 +===================================================================================================================+ |
214 | Data matrix | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/input_dataMatrix.tsv | | 202 | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/input_dataMatrix.tsv | |
215 +-------------------+-------------------------------------------------------------------------------------------------------------------+ | 203 +-------------------------------------------------------------------------------------------------------------------+ |
216 | Sample metadata | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/input_sampleMetadata.tsv | | 204 | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/input_sampleMetadata.tsv | |
217 +-------------------+-------------------------------------------------------------------------------------------------------------------+ | 205 +-------------------------------------------------------------------------------------------------------------------+ |
218 | Feature metadata | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/input_variableMetadata.tsv | | 206 | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/input_variableMetadata.tsv | |
219 +-------------------+-------------------------------------------------------------------------------------------------------------------+ | 207 +-------------------------------------------------------------------------------------------------------------------+ |
208 | |
209 .. class:: infomark | |
220 | 210 |
221 **Other input parameters** | 211 **Other input parameters** |
222 | 212 |
223 +-----------------+---------------+ | 213 +-----------------+---------------+ |
224 | Input Parameter | Value | | 214 | Input Parameter | Value | |
225 +=================+===============+ | 215 +=================+===============+ |
216 | prefix | c | | |
217 +-----------------+---------------+ | |
226 | ksamples | 3,4 | | 218 | ksamples | 3,4 | |
227 +-----------------+---------------+ | 219 +-----------------+---------------+ |
228 | kfeatures | 5,6,7 | | 220 | kfeatures | 5,6,7 | |
229 +-----------------+---------------+ | 221 +-----------------+---------------+ |
230 | iter_max | 10 | | 222 | iter_max | 20 | |
231 +-----------------+---------------+ | 223 +-----------------+---------------+ |
232 | nstart | 1 | | 224 | nstart | 20 | |
233 +-----------------+---------------+ | 225 +-----------------+---------------+ |
234 | algorithm | Hartigan-Wong | | 226 | algorithm | Hartigan-Wong | |
235 +-----------------+---------------+ | 227 +-----------------+---------------+ |
228 | |
229 .. class:: infomark | |
230 | |
231 **Expected output files** | |
232 | |
233 +-------------------------------------------------------------------------------------------------------------------+ | |
234 | URL | | |
235 +===================================================================================================================+ | |
236 | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/output_kmeans-score.tsv | | |
237 +-------------------------------------------------------------------------------------------------------------------+ | |
238 | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/output_kmeans-vrbl.tsv | | |
239 +-------------------------------------------------------------------------------------------------------------------+ | |
240 | https://raw.githubusercontent.com/HegemanLab/w4mkmeans_galaxy_wrapper/master/test-data/output_kmeans-smpl.tsv | | |
241 +-------------------------------------------------------------------------------------------------------------------+ | |
236 | 242 |
237 ---- | 243 ---- |
238 NEWS | 244 NEWS |
239 ---- | 245 ---- |
240 | 246 |
247 - February 2018, Version 0.98.4 - Renamed output datasets to append '``.kmeans-smpl``', '``.kmeans-vrbl``', or '``.kmeans-score``'; refactored multi-threading. | |
241 - August 2017, Version 0.98.3 - Add (optional) prefix to category numbers for downstream tools that treat only non-numeric data as categorical. | 248 - August 2017, Version 0.98.3 - Add (optional) prefix to category numbers for downstream tools that treat only non-numeric data as categorical. |
242 - August 2017, Version 0.98.1 - First release | 249 - August 2017, Version 0.98.1 - First release |
243 | 250 |
244 --------- | 251 --------- |
245 Citations | 252 Citations |
275 title = {Cluster Analysis of Multivariate Data: Efficiency versus Interpretability of Classification}, | 282 title = {Cluster Analysis of Multivariate Data: Efficiency versus Interpretability of Classification}, |
276 volume = 21, | 283 volume = 21, |
277 year = 1965 | 284 year = 1965 |
278 } | 285 } |
279 ]]></citation> | 286 ]]></citation> |
280 <!-- W4M 3.0 - Guitton et al. 2017--> | 287 <!-- W4m 3.0 - Guitton et al. 2017--> |
281 <citation type="doi">10.1016/j.biocel.2017.07.002</citation> | 288 <citation type="doi">10.1016/j.biocel.2017.07.002</citation> |
282 <!-- W4M 2.5 - Giacomini et al. 2014 --> | 289 <!-- W4m 2.5 - Giacomini et al. 2014 --> |
283 <citation type="doi">10.1093/bioinformatics/btu813</citation> | 290 <citation type="doi">10.1093/bioinformatics/btu813</citation> |
284 <!-- Hartigan and Wong algorithm --> | 291 <!-- Hartigan and Wong algorithm --> |
285 <citation type="bibtex"><![CDATA[ | 292 <citation type="doi">10.2307/2346830</citation> |
286 @article{Hartigan79, | |
287 added-at = {2007-02-27T16:22:09.000+0100}, | |
288 author = {Hartigan, J. and Wong, M.}, | |
289 biburl = {https://www.bibsonomy.org/bibtex/23d8bfc440c5725783876929c022f67ce/pierpaolo.pk81}, | |
290 description = {WSD}, | |
291 interhash = {10d6d33920d9af578a4d0a556dc1477d}, | |
292 intrahash = {3d8bfc440c5725783876929c022f67ce}, | |
293 journal = {Applied Statistics}, | |
294 keywords = {imported}, | |
295 pages = {100-108}, | |
296 timestamp = {2007-02-27T16:22:11.000+0100}, | |
297 title = {Algorithm AS136: A k-means clustering algorithm}, | |
298 volume = 28, | |
299 year = 1979 | |
300 } | |
301 ]]></citation> | |
302 <!-- Lloyd algorithm --> | 293 <!-- Lloyd algorithm --> |
303 <citation type="doi">10.1109/TIT.1982.1056489</citation> | 294 <citation type="doi">10.1109/TIT.1982.1056489</citation> |
304 <!-- MacQueen algorithm --> | 295 <!-- MacQueen algorithm --> |
305 <citation type="bibtex"><![CDATA[ | 296 <citation type="bibtex"><![CDATA[ |
306 @inproceedings{MacQueen1967, | 297 @inproceedings{MacQueen1967, |