Mercurial > repos > ethevenot > batchcorrection
comparison batch_correction_wrapper.R @ 0:b74d1d533dea draft default tip
planemo upload for repository https://github.com/workflow4metabolomics/batchcorrection.git commit 241fb99a843e13195c5054cd9731e1561f039bde
| author | ethevenot |
|---|---|
| date | Thu, 04 Aug 2016 11:40:35 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:b74d1d533dea |
|---|---|
| 1 #!/usr/bin/Rscript --vanilla --slave --no-site-file | |
| 2 | |
| 3 ################################################################################################ | |
| 4 # batch_correction_wrapper # | |
| 5 # # | |
| 6 # Author: Marion LANDI / Jean-Francois MARTIN / Melanie Petera # | |
| 7 # User: Galaxy # | |
| 8 # Original data: -- # | |
| 9 # Starting date: 22-07-2014 # | |
| 10 # Version 1: 22-07-2014 # | |
| 11 # Version 2: 08-12-2014 # | |
| 12 # Version 2.1: 09-01-2015 modification in Error message of sample matching # | |
| 13 # Version 2.2: 16-03-2015 inclusion of miniTools' functions for special characters # | |
| 14 # # | |
| 15 # # | |
| 16 # Input files: dataMatrix.txt ; sampleMetadata.txt ; variableMetadata.txt (for DBC) # | |
| 17 # Output files: graph_output.pdf ; corrected table ; diagnostic table # | |
| 18 # # | |
| 19 ################################################################################################ | |
| 20 | |
| 21 | |
| 22 library(batch) #necessary for parseCommandArgs function | |
| 23 args = parseCommandArgs(evaluate=FALSE) #interpretation of arguments given in command line as an R list of objects | |
| 24 | |
| 25 source_local <- function(...){ | |
| 26 argv <- commandArgs(trailingOnly = FALSE) | |
| 27 base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) | |
| 28 for(i in 1:length(list(...))){source(paste(base_dir, list(...)[[i]], sep="/"))} | |
| 29 } | |
| 30 #Import the different functions | |
| 31 source_local("Normalisation_QCpool.r","easyrlibrary-lib/RcheckLibrary.R","easyrlibrary-lib/miniTools.R") | |
| 32 | |
| 33 | |
| 34 ## Reading of input files | |
| 35 idsample=read.table(args$sampleMetadata,header=T,sep='\t',check.names=FALSE) | |
| 36 iddata=read.table(args$dataMatrix,header=T,sep='\t',check.names=FALSE) | |
| 37 | |
| 38 ### Table match check | |
| 39 table.check <- match2(iddata,idsample,"sample") | |
| 40 | |
| 41 ### StockID | |
| 42 samp.id <- stockID(iddata,idsample,"sample") | |
| 43 iddata<-samp.id$dataMatrix ; idsample<-samp.id$Metadata ; samp.id<-samp.id$id.match | |
| 44 | |
| 45 ### Checking mandatory variables | |
| 46 mand.check <- "" | |
| 47 for(mandcol in c("sampleType","injectionOrder","batch")){ | |
| 48 if(!(mandcol%in%colnames(idsample))){ | |
| 49 mand.check <- c(mand.check,"\nError: no '",mandcol,"' column in sample metadata.\n", | |
| 50 "Note: table must include this exact column name (it is case-sensitive).\n") | |
| 51 } | |
| 52 } | |
| 53 if(length(mand.check)>1){check.err(paste(table.check,mand.check,sep=""))} | |
| 54 | |
| 55 ### Formating | |
| 56 idsample[[1]]=make.names(idsample[[1]]) | |
| 57 dimnames(iddata)[[1]]=iddata[[1]] | |
| 58 | |
| 59 ### Transposition of ions data | |
| 60 idTdata=t(iddata[,2:dim(iddata)[2]]) | |
| 61 idTdata=data.frame(dimnames(idTdata)[[1]],idTdata) | |
| 62 | |
| 63 ### Merge of 2 files (ok even if the two dataframe are not sorted on the same key) | |
| 64 id=merge(idsample, idTdata, by.x=1, by.y=1) | |
| 65 | |
| 66 id$batch=as.factor(id$batch) | |
| 67 ids=id[id$sampleType == 'pool' | id$sampleType == 'sample',] | |
| 68 nbid=dim(idsample)[2] | |
| 69 | |
| 70 ### Checking the number of sample and pool | |
| 71 | |
| 72 # least 2 samples | |
| 73 if(length(which(ids$sampleType == "sample"))<2){ | |
| 74 table.check <- c(table.check,"\nError: less than 2 samples specified in sample metadata.", | |
| 75 "\nMake sure this is not due to errors in sampleType coding.\n") | |
| 76 } | |
| 77 | |
| 78 # least 2 pools per batch for all batchs | |
| 79 B <- rep(0,length(levels(ids$batch))) | |
| 80 for(nbB in length(levels(ids$batch))){ | |
| 81 B[nbB]<-length(which(ids[which(ids$batch==(levels(ids$batch)[nbB])),]$sampleType == "pool")) | |
| 82 } | |
| 83 if(length(which(B>1))==0){ | |
| 84 table.check <- c(table.check,"\nError: less than 2 pools specified in each batch in sample metadata.", | |
| 85 "\nMake sure this is not due to errors in sampleType coding.\n") | |
| 86 } | |
| 87 | |
| 88 ### Factor of interest | |
| 89 factbio=args$ref_factor | |
| 90 | |
| 91 | |
| 92 if(args$analyse == "batch_correction") { | |
| 93 ## Reading of Metadata Ions file | |
| 94 metaion=read.table(args$variableMetadata,header=T,sep='\t',check.names=FALSE) | |
| 95 ## Table match check | |
| 96 table.check <- c(table.check,match2(iddata,metaion,"variable")) | |
| 97 check.err(table.check) | |
| 98 | |
| 99 ## variables | |
| 100 detail=args$detail | |
| 101 method=args$method | |
| 102 | |
| 103 ## outputs | |
| 104 outfic=args$variable_for_simca | |
| 105 outlog=args$graph_output | |
| 106 | |
| 107 ## Launch | |
| 108 res = norm_QCpool(ids,nbid,outfic,outlog,factbio,metaion,detail,F,F,method,args$span) | |
| 109 save(res, file=args$rdata_output) | |
| 110 write.table(reproduceID(res[[1]],res[[3]],"sample",samp.id)$dataMatrix, file=args$dataMatrix_out, sep = '\t', row.names=F, quote=F) | |
| 111 write.table(res[[2]], file=args$variableMetadata_out, sep = '\t', row.names=F, quote=F) | |
| 112 }else{ | |
| 113 ## error check | |
| 114 check.err(table.check) | |
| 115 | |
| 116 ## outputs | |
| 117 out_graph_pdf=args$out_graph_pdf | |
| 118 out_preNormSummary=args$out_preNormSummary | |
| 119 | |
| 120 ## Launch | |
| 121 plotsituation(ids,nbid,out_graph_pdf,out_preNormSummary,factbio,args$span) | |
| 122 } | |
| 123 | |
| 124 rm(args) |
