Mercurial > repos > ethevenot > multivariate
diff multivariate_config.xml @ 2:fa173e12e185 draft
planemo upload for repository https://github.com/workflow4metabolomics/multivariate.git commit 9f4dfcdc64aa9ac2a2f6d613cc33961c02fec254-dirty
author | ethevenot |
---|---|
date | Sat, 06 Aug 2016 12:07:13 -0400 |
parents | da272496b32d |
children | e91de3b04320 |
line wrap: on
line diff
--- a/multivariate_config.xml Sat Jul 30 12:31:20 2016 -0400 +++ b/multivariate_config.xml Sat Aug 06 12:07:13 2016 -0400 @@ -1,212 +1,216 @@ -<tool id="Multivariate" name="Multivariate" version="2.3.4"> - <description>PCA, PLS and OPLS</description> - - <requirements> - <requirement type="package" version="3.2.2">R</requirement> - <requirement type="package">r-batch</requirement> - <requirement type="package" version="1.4.2">bioconductor-ropls</requirement> - </requirements> - - <command><![CDATA[ - $__tool_directory__/multivariate_wrapper.R - - dataMatrix_in "$dataMatrix_in" - sampleMetadata_in "$sampleMetadata_in" - variableMetadata_in "$variableMetadata_in" - - respC "$respC" - predI "$predI" - orthoI "$orthoI" - testL "$testL" - - #if $advGph.opgC == "full" - typeC "$advGph.typeC" - parAsColC "$advGph.parAsColC" - parCexN "$advGph.parCexN" - parPc1I "$advGph.parPc1I" - parPc2I "$advGph.parPc2I" - parMahalC "$advGph.parMahalC" - parLabVc "$advGph.parLabVc" - #end if - - #if $advCpt.opcC == "full" - algoC "$advCpt.algoC" - crossvalI "$advCpt.crossvalI" - log10L "$advCpt.log10L" - permI "$advCpt.permI" - scaleC "$advCpt.scaleC" - #end if - - sampleMetadata_out "$sampleMetadata_out" - variableMetadata_out "$variableMetadata_out" - figure "$figure" - information "$information" - ]]></command> - - <inputs> - <param name="dataMatrix_in" label="Data matrix file" type="data" format="tabular" help="variable x sample, decimal: '.', missing: NA, mode: numerical, sep: tabular" /> - <param name="sampleMetadata_in" label="Sample metadata file" type="data" format="tabular" help="sample x metadata, decimal: '.', missing: NA, mode: character and numerical, sep: tabular" /> - <param name="variableMetadata_in" label="Variable metadata file" type="data" format="tabular" help="variable x metadata, decimal: '.', missing: NA, mode: character and numerical, sep: tabular" /> - <param name="respC" label="Y Response (for (O)PLS(-DA) only)" type="text" value = "none" help="Notes: 1) PCA: keep the default (none); 2) (O)PLS(-DA): indicate the name of the column of the sample table to be modeled" /> - - <param name="predI" label="Number of predictive components" type="select" help="Notes: 1) PCA and PLS(-DA): NA can be selected to get a suggestion of the optimal number of predictive components; 2) OPLS(-DA) modeling: select 1 predictive component"> - <option value="NA" selected="true">NA</option> - <option value="1">1</option> - <option value="2">2</option> - <option value="3">3</option> - <option value="4">4</option> - <option value="5">5</option> - <option value="6">6</option> - <option value="7">7</option> - <option value="8">8</option> - <option value="9">9</option> - <option value="10">10</option> +<tool id="Multivariate" name="Multivariate" version="2.3.6"> + <description>PCA, PLS and OPLS</description> + + <requirements> + <requirement type="package" version="3.2.2">R</requirement> + <requirement type="package">r-batch</requirement> + <requirement type="package" version="1.4.2">bioconductor-ropls</requirement> + </requirements> + + <stdio> + <exit_code range="1:" level="fatal" /> + </stdio> + + <command><![CDATA[ + Rscript $__tool_directory__/multivariate_wrapper.R + + dataMatrix_in "$dataMatrix_in" + sampleMetadata_in "$sampleMetadata_in" + variableMetadata_in "$variableMetadata_in" + + respC "$respC" + predI "$predI" + orthoI "$orthoI" + testL "$testL" + + #if $advGph.opgC == "full" + typeC "$advGph.typeC" + parAsColC "$advGph.parAsColC" + parCexN "$advGph.parCexN" + parPc1I "$advGph.parPc1I" + parPc2I "$advGph.parPc2I" + parMahalC "$advGph.parMahalC" + parLabVc "$advGph.parLabVc" + #end if + + #if $advCpt.opcC == "full" + algoC "$advCpt.algoC" + crossvalI "$advCpt.crossvalI" + log10L "$advCpt.log10L" + permI "$advCpt.permI" + scaleC "$advCpt.scaleC" + #end if + + sampleMetadata_out "$sampleMetadata_out" + variableMetadata_out "$variableMetadata_out" + figure "$figure" + information "$information" + ]]></command> + + <inputs> + <param name="dataMatrix_in" label="Data matrix file" type="data" format="tabular" help="variable x sample, decimal: '.', missing: NA, mode: numerical, sep: tabular" /> + <param name="sampleMetadata_in" label="Sample metadata file" type="data" format="tabular" help="sample x metadata, decimal: '.', missing: NA, mode: character and numerical, sep: tabular" /> + <param name="variableMetadata_in" label="Variable metadata file" type="data" format="tabular" help="variable x metadata, decimal: '.', missing: NA, mode: character and numerical, sep: tabular" /> + <param name="respC" label="Y Response (for (O)PLS(-DA) only)" type="text" value = "none" help="Notes: 1) PCA: keep the default (none); 2) (O)PLS(-DA): indicate the name of the column of the sample table to be modeled" /> + + <param name="predI" label="Number of predictive components" type="select" help="Notes: 1) PCA and PLS(-DA): NA can be selected to get a suggestion of the optimal number of predictive components; 2) OPLS(-DA) modeling: select 1 predictive component"> + <option value="NA" selected="true">NA</option> + <option value="1">1</option> + <option value="2">2</option> + <option value="3">3</option> + <option value="4">4</option> + <option value="5">5</option> + <option value="6">6</option> + <option value="7">7</option> + <option value="8">8</option> + <option value="9">9</option> + <option value="10">10</option> </param> <param name="orthoI" label="Number of orthogonal components (for OPLS(-DA) only)" type="select" help="Notes: 1) PCA and PLS(-DA): keep the default value (0); 2) OPLS(-DA): NA can be selected to get a suggestion of the optimal number of orthogonal components"> - <option value="0">0</option> - <option value="NA">NA</option> - <option value="1">1</option> - <option value="2">2</option> - <option value="3">3</option> - <option value="4">4</option> - <option value="5">5</option> - <option value="6">6</option> - <option value="7">7</option> - <option value="8">8</option> - <option value="9">9</option> - <option value="10">10</option> + <option value="0">0</option> + <option value="NA">NA</option> + <option value="1">1</option> + <option value="2">2</option> + <option value="3">3</option> + <option value="4">4</option> + <option value="5">5</option> + <option value="6">6</option> + <option value="7">7</option> + <option value="8">8</option> + <option value="9">9</option> + <option value="10">10</option> </param> - <param name="testL" label="Samples to be tested" type="select" help="In case predictions should be computed on test samples, provide in your sampleMetadata a column named test. (use exactly this column name, with the dot at the end) and containing yes and no values to indicate which samples should be tested; for those samples, the values of the response will not be used (you can leave NA in the response column of the sample metadata)"> - <option value="TRUE">yes</option> - <option value="FALSE" selected="true">no</option> + <param name="testL" label="Samples to be tested" type="select" help="In case predictions should be computed on test samples, provide in your sampleMetadata a column named test. (use exactly this column name, with the dot at the end) and containing yes and no values to indicate which samples should be tested; for those samples, the values of the response will not be used (you can leave NA in the response column of the sample metadata)"> + <option value="TRUE">yes</option> + <option value="FALSE" selected="true">no</option> </param> + + <conditional name="advGph"> + <param name="opgC" type="select" label="Advanced graphical parameters" > + <option value="default" selected="true">Use default</option> + <option value="full">Full parameter list</option> + </param> + + <when value="default"/> + <when value="full"> + <param name="typeC" label="Graphic type" type="select" help=""> + <option value="correlation">correlation</option> + <option value="outlier">outlier</option> + <option value="overview">overview</option> + <option value="permutation">permutation</option> + <option value="predict-train">predict-train</option> + <option value="summary" selected="true">summary</option> + <option value="x-loading">x-loading</option> + <option value="x-score">x-score</option> + <option value="x-variance">x-variance</option> + <option value="xy-score">xy-score</option> + <option value="xy-weight">xy-weight</option> + </param> + <param name="parMahalC" label="Ellipses" type="text" value = "NA" help="Name of the sample metadata column with the classes to be used for drawing ellipses; for (O)PLS-DA, the default 'NA' means that the same name as the 'Response' argument above will be used; if you do not want ellipses, use none instead of NA" /> + <param name="parAsColC" label="Sample colors" type="text" value = "none" help="Indicate the name of the sample metadata column with the names to be converted into colors; by default (none), data matrix sample names will be used" /> + <param name="parLabVc" label="Sample labels" type="text" value = "none" help="Indicate the name of the sample metadata column with the names to be used as labels; By default (none), sample names from the data matrix will be used" /> + <param name="parPc1I" label="Component to be displayed as abscissa" type="select" value = "-" help="In case of OPLS(-DA), the first component (i.e. the predictive component) must be set to 1"> + <option value="1">1</option> + <option value="2">2</option> + <option value="3">3</option> + <option value="4">4</option> + <option value="5">5</option> + <option value="6">6</option> + <option value="7">7</option> + <option value="8">8</option> + <option value="9">9</option> + <option value="10">10</option> + </param> + <param name="parPc2I" label="Component to be displayed as ordinate" type="select" help="In case of OPLS(-DA), the orthogonal component of the selected value - 1 will be displayed (e.g. to see the first orthogonal component, select the value '2' below)"> + <option value="2">2</option> + <option value="3">3</option> + <option value="4">4</option> + <option value="5">5</option> + <option value="6">6</option> + <option value="7">7</option> + <option value="8">8</option> + <option value="9">9</option> + <option value="10">10</option> + </param> + <param name="parCexN" type="float" value="0.8" label="Amount by which plotting text should be magnified relative to the default"/> - <conditional name="advGph"> - <param name="opgC" type="select" label="Advanced graphical parameters" > - <option value="default" selected="true">Use default</option> - <option value="full">Full parameter list</option> - </param> - - <when value="default"/> - <when value="full"> - <param name="typeC" label="Graphic type" type="select" help=""> - <option value="correlation">correlation</option> - <option value="outlier">outlier</option> - <option value="overview">overview</option> - <option value="permutation">permutation</option> - <option value="predict-train">predict-train</option> - <option value="summary" selected="true">summary</option> - <option value="x-loading">x-loading</option> - <option value="x-score">x-score</option> - <option value="x-variance">x-variance</option> - <option value="xy-score">xy-score</option> - <option value="xy-weight">xy-weight</option> - </param> - <param name="parMahalC" label="Ellipses" type="text" value = "NA" help="Name of the sample metadata column with the classes to be used for drawing ellipses; for (O)PLS-DA, the default 'NA' means that the same name as the 'Response' argument above will be used; if you do not want ellipses, use none instead of NA" /> - <param name="parAsColC" label="Sample colors" type="text" value = "none" help="Indicate the name of the sample metadata column with the names to be converted into colors; by default (none), data matrix sample names will be used" /> - <param name="parLabVc" label="Sample labels" type="text" value = "none" help="Indicate the name of the sample metadata column with the names to be used as labels; By default (none), sample names from the data matrix will be used" /> - <param name="parPc1I" label="Component to be displayed as abscissa" type="select" value = "-" help="In case of OPLS(-DA), the first component (i.e. the predictive component) must be set to 1"> - <option value="1">1</option> - <option value="2">2</option> - <option value="3">3</option> - <option value="4">4</option> - <option value="5">5</option> - <option value="6">6</option> - <option value="7">7</option> - <option value="8">8</option> - <option value="9">9</option> - <option value="10">10</option> - </param> - <param name="parPc2I" label="Component to be displayed as ordinate" type="select" help="In case of OPLS(-DA), the orthogonal component of the selected value - 1 will be displayed (e.g. to see the first orthogonal component, select the value '2' below)"> - <option value="2">2</option> - <option value="3">3</option> - <option value="4">4</option> - <option value="5">5</option> - <option value="6">6</option> - <option value="7">7</option> - <option value="8">8</option> - <option value="9">9</option> - <option value="10">10</option> - </param> - <param name="parCexN" type="float" value="0.8" label="Amount by which plotting text should be magnified relative to the default"/> - - </when> - </conditional> + </when> + </conditional> + + <conditional name="advCpt"> + <param name="opcC" type="select" label="Advanced computational parameters" > + <option value="default" selected="true">Use default</option> + <option value="full">Full parameter list</option> + </param> + + <when value="default"/> + <when value="full"> + <param name="scaleC" label="Scaling" type="select" help="Select 'standard' for mean-centering and unit-variance scaling"> + <option value="standard">standard</option> + <option value="center">center</option> + <option value="pareto">pareto</option> + </param> + <param name="permI" label="Permutation testing for (O)PLS(-DA): Number of permutations" type="select" help="Default is 20 for single response models without train/test partition, and 0 otherwise"> + <option value="0">0</option> + <option value="20" selected="true">20</option> + <option value="100">100</option> + <option value="1000">1000</option> + </param> + <param name="log10L" label="Log10 transformation" type="select" help=""> + <option value="TRUE">yes</option> + <option value="FALSE" selected="true">no</option> + </param> + <param name="algoC" label="Algorithm" type="select" help="Default algorithm is 'svd' for PCA and 'nipals' for PLS and OPLS; when performing PCA with 'svd' on an data matrix containing missing values, NAs are set to half the minimum of non-missing values and a warning is generated; an alternative is to use the 'nipals' algorithm (able to handle a moderate amount of missing values)"> + <option value="default">default</option> + <option value="nipals">nipals</option> + <option value="svd">svd</option> + </param> + <param name="crossvalI" label="Number of cross-validation segments" type="select" help="Must be less than or equal to the number of samples"> + <option value="1">1</option> + <option value="2">2</option> + <option value="3">3</option> + <option value="4">4</option> + <option value="5">5</option> + <option value="6">6</option> + <option value="7" selected="true">7</option> + <option value="8">8</option> + <option value="9">9</option> + <option value="10">10</option> + </param> - <conditional name="advCpt"> - <param name="opcC" type="select" label="Advanced computational parameters" > - <option value="default" selected="true">Use default</option> - <option value="full">Full parameter list</option> - </param> - - <when value="default"/> - <when value="full"> - <param name="scaleC" label="Scaling" type="select" help="Select 'standard' for mean-centering and unit-variance scaling"> - <option value="standard">standard</option> - <option value="center">center</option> - <option value="pareto">pareto</option> - </param> - <param name="permI" label="Permutation testing for (O)PLS(-DA): Number of permutations" type="select" help="Default is 20 for single response models without train/test partition, and 0 otherwise"> - <option value="0">0</option> - <option value="20" selected="true">20</option> - <option value="100">100</option> - <option value="1000">1000</option> - </param> - <param name="log10L" label="Log10 transformation" type="select" help=""> - <option value="TRUE">yes</option> - <option value="FALSE" selected="true">no</option> - </param> - <param name="algoC" label="Algorithm" type="select" help="Default algorithm is 'svd' for PCA and 'nipals' for PLS and OPLS; when performing PCA with 'svd' on an data matrix containing missing values, NAs are set to half the minimum of non-missing values and a warning is generated; an alternative is to use the 'nipals' algorithm (able to handle a moderate amount of missing values)"> - <option value="default">default</option> - <option value="nipals">nipals</option> - <option value="svd">svd</option> - </param> - <param name="crossvalI" label="Number of cross-validation segments" type="select" help="Must be less than or equal to the number of samples"> - <option value="1">1</option> - <option value="2">2</option> - <option value="3">3</option> - <option value="4">4</option> - <option value="5">5</option> - <option value="6">6</option> - <option value="7" selected="true">7</option> - <option value="8">8</option> - <option value="9">9</option> - <option value="10">10</option> - </param> - - </when> - </conditional> - + </when> + </conditional> + </inputs> - + <outputs> <data name="sampleMetadata_out" label="${tool.name}_${sampleMetadata_in.name}" format="tabular" ></data> <data name="variableMetadata_out" label="${tool.name}_${variableMetadata_in.name}" format="tabular" ></data> - <data name="figure" label="${tool.name}__figure.pdf" format="pdf"/> - <data name="information" label="${tool.name}__information.txt" format="txt"/> + <data name="figure" label="${tool.name}__figure.pdf" format="pdf"/> + <data name="information" label="${tool.name}__information.txt" format="txt"/> </outputs> <tests> - <test> - <param name="dataMatrix_in" value="input-dataMatrix.tsv"/> - <param name="sampleMetadata_in" value="input-sampleMetadata.tsv"/> - <param name="variableMetadata_in" value="input-variableMetadata.tsv"/> - <param name="respC" value="age"/> - <param name="predI" value="1"/> - <param name="orthoI" value="1"/> - <param name="testL" value="FALSE"/> - <output name="sampleMetadata_out"> - <assert_contents> - <has_n_columns n="9"/> - </assert_contents> - </output> - <output name="variableMetadata_out"> - <assert_contents> - <has_n_columns n="7"/> - </assert_contents> - </output> - </test> + <test> + <param name="dataMatrix_in" value="input-dataMatrix.tsv"/> + <param name="sampleMetadata_in" value="input-sampleMetadata.tsv"/> + <param name="variableMetadata_in" value="input-variableMetadata.tsv"/> + <param name="respC" value="age"/> + <param name="predI" value="1"/> + <param name="orthoI" value="1"/> + <param name="testL" value="FALSE"/> + <output name="sampleMetadata_out"> + <assert_contents> + <has_n_columns n="9"/> + </assert_contents> + </output> + <output name="variableMetadata_out"> + <assert_contents> + <has_n_columns n="7"/> + </assert_contents> + </output> + </test> </tests> <help> @@ -414,11 +418,11 @@ sampleMetadata_out.tabular - | **sampleMetadata** file identical to the file given as argument, except that two columns with the x-scores of the displayed components have been added + | **sampleMetadata** tabular separated file identical to the file given as argument, except that two columns with the x-scores of the displayed components have been added | variableMetadata_out.tabular - | **variableMetadata** file identical to the file given as argument, except that i) 3 columns with the x-loadings of the displayed components, and the regression coefficients, have been added, ii) in the case of PLS, a column with the VIP values (variable importance in projection of the model with all components) has been added, iii) in the case of OPLS, 2 columns with the VIP_pred and VIP_ortho have been added. + | **variableMetadata** tabular separated file identical to the file given as argument, except that i) 3 columns with the x-loadings of the displayed components, and the regression coefficients, have been added, ii) in the case of PLS, a column with the VIP values (variable importance in projection of the model with all components) has been added, iii) in the case of OPLS, 2 columns with the VIP_pred and VIP_ortho have been added. | figure.pdf @@ -439,7 +443,7 @@ .. class:: infomark -See the **W4M00001a_sacurine-subset-statistics**, **W4M00001b_sacurine-complete**, **W4M00002_mtbls2** or **W4M00003_diaplasma** shared histories in the **Shared Data/Published Histories** menu +See the **W4M00001a_sacurine-subset-statistics**, **W4M00001b_sacurine-complete**, **W4M00002_mtbls2** or **W4M00003_diaplasma** shared histories in the **Shared Data/Published Histories** menu (https://galaxy.workflow4metabolomics.org/history/list_published) Figure output @@ -454,6 +458,13 @@ NEWS ---- +CHANGES IN VERSION 2.3.6 +======================== + +INTERNAL MODIFICATIONS + +Minor internal modifications + CHANGES IN VERSION 2.3.4 ======================== @@ -508,5 +519,21 @@ </help> - <citations/> + <citations> + <citation type="bibtex">@Article{Thevenot2015, + Title = {Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses}, + Author = {Thevenot, Etienne A. and Roux, Aurelie and Xu, Ying and Ezan, Eric and Junot, Christophe}, + Journal = {Journal of Proteome Research}, + Year = {2015}, + Note = {PMID: 26088811}, + Number = {8}, + Pages = {3322-3335}, + Volume = {14}, + + Doi = {10.1021/acs.jproteome.5b00354}, + Url = {http://pubs.acs.org/doi/full/10.1021/acs.jproteome.5b00354} + }</citation> + <citation type="doi">10.1093/bioinformatics/btu813</citation> + </citations> + </tool>