Mercurial > repos > fabio > gdcwebapp
view json_data_source_mod.py @ 9:61989e353d24 draft
Deleted selected files
author | fabio |
---|---|
date | Thu, 25 May 2017 15:49:07 -0400 |
parents | 7815152f70c6 |
children | c0be9583df97 |
line wrap: on
line source
#!/usr/bin/env python import json import optparse import urllib import os.path import os from operator import itemgetter import tarfile __version__ = "1.0.0" CHUNK_SIZE = 2**20 #1mb VALID_CHARS = '.-()[]0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ ' def splitext(path): for ext in ['.tar.gz', '.tar.bz2']: if path.endswith(ext): path, ext = path[:-len(ext)], path[-len(ext):] break else: path, ext = os.path.splitext(path) return path, ext[1:] def chunk_write( source_stream, target_stream, source_method = "read", target_method="write" ): source_method = getattr( source_stream, source_method ) target_method = getattr( target_stream, target_method ) while True: chunk = source_method( CHUNK_SIZE ) if chunk: target_method( chunk ) else: break def deconstruct_multi_filename( multi_filename ): keys = [ 'primary', 'id', 'name', 'visible', 'file_type' ] return ( dict( zip( keys, multi_filename.split('_') ) ) ) def construct_multi_filename( id, name, file_type ): """ Implementation of *Number of Output datasets cannot be determined until tool run* from documentation_. .. _documentation: http://wiki.galaxyproject.org/Admin/Tools/Multiple%20Output%20Files """ filename = "%s_%s_%s_%s_%s" % ( 'primary', id, name, 'visible', file_type ) return filename def download_from_query( query_data, target_output_filename ): """ Download file from the json data and write it to target_output_filename. """ query_url = query_data.get( 'url' ) query_file_type = query_data.get( 'extension' ) query_stream = urllib.urlopen( query_url ) output_stream = open( target_output_filename, 'wb' ) chunk_write( query_stream, output_stream ) query_stream.close() output_stream.close() def store_file_from_archive( file_object, target_output_filename ): """ Store file after extracting from archive and organize them as a collection using the structure (collection-name)_(file-name).ext as file name """ output_stream = open( target_output_filename, 'wb' ) chunk_write( file_object.read(), output_stream ) output_stream.close() def download_extra_data( query_ext_data, base_path ): """ Download any extra data defined in the JSON. NOTE: the "path" value is a relative path to the file on our file system. This is slightly dangerous and we should make every effort to avoid a malicious absolute path to write the file elsewhere on the filesystem. """ for ext_data in query_ext_data: if not os.path.exists( base_path ): os.mkdir( base_path ) query_stream = urllib.urlopen( ext_data.get( 'url' ) ) ext_path = ext_data.get( 'path' ) os.makedirs( os.path.normpath( '/'.join( [ base_path, os.path.dirname( ext_path ) ] ) ) ) output_stream = open( os.path.normpath( '/'.join( [ base_path, ext_path ] ) ), 'wb' ) chunk_write( query_stream, output_stream ) query_stream.close() output_stream.close() def metadata_to_json_for_archive_entry( dataset_id, extension, metaname, filename, ds_type='dataset', primary=False ): """ Return line separated JSON """ meta_dict = dict( type = ds_type, ext = extension, filename = filename, name = metaname, metadata = {} ) if primary: meta_dict[ 'base_dataset_id' ] = dataset_id else: meta_dict[ 'dataset_id' ] = dataset_id return "%s\n" % json.dumps( meta_dict ) def metadata_to_json( dataset_id, metadata, filename, ds_type='dataset', primary=False): """ Return line separated JSON """ meta_dict = dict( type = ds_type, ext = metadata.get( 'extension' ), filename = filename, name = metadata.get( 'name' ), metadata = metadata.get( 'metadata', {} ) ) if metadata.get( 'extra_data', None ): meta_dict[ 'extra_files' ] = '_'.join( [ filename, 'files' ] ) if primary: meta_dict[ 'base_dataset_id' ] = dataset_id else: meta_dict[ 'dataset_id' ] = dataset_id return "%s\n" % json.dumps( meta_dict ) def download_files_and_write_metadata(query_item, json_params, output_base_path, metadata_parameter_file, primary, appdata_path): """ Main work function that operates on the JSON representation of one dataset and its metadata. Returns True. """ dataset_url, output_filename, \ extra_files_path, file_name, \ ext, out_data_name, \ hda_id, dataset_id = set_up_config_values(json_params) extension = query_item.get( 'extension' ) filename = query_item.get( 'url' ) extra_data = query_item.get( 'extra_data', None ) if primary: filename = ''.join( c in VALID_CHARS and c or '-' for c in filename ) name = construct_multi_filename( hda_id, filename, extension ) target_output_filename = os.path.normpath( '/'.join( [ output_base_path, name ] ) ) metadata_parameter_file.write( metadata_to_json( dataset_id, query_item, target_output_filename, ds_type='new_primary_dataset', primary=primary) ) else: target_output_filename = output_filename metadata_parameter_file.write( metadata_to_json( dataset_id, query_item, target_output_filename, ds_type='dataset', primary=primary) ) download_from_query( query_item, target_output_filename ) if extra_data: extra_files_path = ''.join( [ target_output_filename, 'files' ] ) download_extra_data( extra_data, extra_files_path ) check_ext = "" if ( fname.endswith( "gz" ) ): check_ext = "r:gz" elif ( fname.endswith( "bz2" ) ): check_ext = "r:bz2" elif ( fname.endswith( "tar" ) ): check_ext = "r:" if ( bool( check_ext and check_ext.strip() ) ): with tarfile.open( target_output_filename, check_ext ) as tf: for entry in tf: fileobj = tf.extractfile( entry ) if entry.isfile(): """ dataset_url, output_filename, \ extra_files_path, file_name, \ ext, out_data_name, \ hda_id, dataset_id = set_up_config_values(json_params) """ filename = os.path.basename( entry.name ) extension = splitext( filename ) extra_data = None #target_output_filename = output_filename """ (?P<archive_name>.*)_(?P<file_name>.*)\..* """ filename_with_collection_prefix = query_item.get( 'name' ) + "_" + filename target_output_filename = os.path.join(appdata_path, filename_with_collection_prefix) """ metadata_parameter_file.write( metadata_to_json_for_archive_entry( dataset_id, extension, filename, target_output_filename, ds_type='dataset', primary=primary) ) """ store_file_from_archive( fileobj, target_output_filename ) return True def set_up_config_values(): extra_files_path, file_name, ext, out_data_name, hda_id, dataset_id = \ itemgetter('extra_files_path', 'file_name', 'ext', 'out_data_name', 'hda_id', 'dataset_id')(output_data[0]) def set_up_config_values(json_params): """ Parse json_params file and return a tuple of necessary configuration values. """ datasource_params = json_params.get( 'param_dict' ) dataset_url = datasource_params.get( 'URL' ) output_filename = datasource_params.get( 'output1', None ) output_data = json_params.get( 'output_data' ) extra_files_path, file_name, ext, out_data_name, hda_id, dataset_id = \ itemgetter('extra_files_path', 'file_name', 'ext', 'out_data_name', 'hda_id', 'dataset_id')(output_data[0]) return (dataset_url, output_filename, extra_files_path, file_name, ext, out_data_name, hda_id, dataset_id) def download_from_json_data( options, args ): """ Parse the returned JSON data and download files. Write metadata to flat JSON file. """ output_base_path = options.path appdata_path = options.appdata if not os.path.exists(appdata_path): os.makedirs(appdata_path) # read tool job configuration file and parse parameters we need json_params = json.loads( open( options.json_param_file, 'r' ).read() ) dataset_url, output_filename, \ extra_files_path, file_name, \ ext, out_data_name, \ hda_id, dataset_id = set_up_config_values(json_params) # line separated JSON file to contain all dataset metadata metadata_parameter_file = open( json_params['job_config']['TOOL_PROVIDED_JOB_METADATA_FILE'], 'wb' ) # get JSON response from data source # TODO: make sure response is not enormous query_params = json.loads(urllib.urlopen( dataset_url ).read()) # download and write files primary = False # query_item, hda_id, output_base_path, dataset_id for query_item in query_params: if isinstance( query_item, list ): # TODO: do something with the nested list as a collection for query_subitem in query_item: primary = download_files_and_write_metadata(query_subitem, json_params, output_base_path, metadata_parameter_file, primary, appdata_path) elif isinstance( query_item, dict ): primary = download_files_and_write_metadata(query_item, json_params, output_base_path, metadata_parameter_file, primary, appdata_path) metadata_parameter_file.close() def __main__(): """ Read the JSON return from a data source. Parse each line and request the data, download to "newfilepath", and write metadata. Schema ------ [ {"url":"http://url_of_file", "name":"encode WigData", "extension":"wig", "metadata":{"db_key":"hg19"}, "extra_data":[ {"url":"http://url_of_ext_file", "path":"rel/path/to/ext_file"} ] } ] """ # Parse the command line options usage = "Usage: json_data_source_mod.py max_size --json_param_file filename [options]" parser = optparse.OptionParser(usage = usage) parser.add_option("-j", "--json_param_file", type="string", action="store", dest="json_param_file", help="json schema return data") parser.add_option("-p", "--path", type="string", action="store", dest="path", help="new file path") parser.add_option("-a", "--appdata", type="string", action="store", dest="appdata", help="appdata folder name") parser.add_option("-v", "--version", action="store_true", dest="version", default=False, help="display version and exit") (options, args) = parser.parse_args() if options.version: print __version__ else: download_from_json_data( options, args ) if __name__ == "__main__": __main__()