Mercurial > repos > fcaramia > contra
comparison Contra/scripts/cn_analysis.v3.R @ 0:7564f3b1e675
Uploaded
author | fcaramia |
---|---|
date | Thu, 13 Sep 2012 02:31:43 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:7564f3b1e675 |
---|---|
1 # ----------------------------------------------------------------------# | |
2 # Copyright (c) 2011, Richard Lupat & Jason Li. | |
3 # | |
4 # > Source License < | |
5 # This file is part of CONTRA. | |
6 # | |
7 # CONTRA is free software: you can redistribute it and/or modify | |
8 # it under the terms of the GNU General Public License as published by | |
9 # the Free Software Foundation, either version 3 of the License, or | |
10 # (at your option) any later version. | |
11 # | |
12 # CONTRA is distributed in the hope that it will be useful, | |
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 # GNU General Public License for more details. | |
16 # | |
17 # You should have received a copy of the GNU General Public License | |
18 # along with CONTRA. If not, see <http://www.gnu.org/licenses/>. | |
19 # | |
20 # | |
21 #-----------------------------------------------------------------------# | |
22 # Last Updated : 31 Oct 2011 17:00PM | |
23 | |
24 | |
25 # Parameters Parsing (from Command Line) | |
26 options <- commandArgs(trailingOnly = T) | |
27 bins = as.integer(options[1]) | |
28 rd.cutoff = as.integer(options[2]) | |
29 min.bases = as.integer(options[3]) | |
30 outf = options[4] | |
31 sample.name = options[5] | |
32 plotoption = options[6] | |
33 actual.bin = as.numeric(options[7]) | |
34 min_normal_rd_for_call = as.numeric(options[8]) | |
35 min_tumour_rd_for_call = as.numeric(options[9]) | |
36 min_avg_cov_for_call = as.numeric(options[10]) | |
37 | |
38 if (sample.name == "No-SampleName") | |
39 sample.name = "" | |
40 | |
41 if (sample.name != "") | |
42 sample.name = paste(sample.name, ".", sep="") | |
43 | |
44 # Setup output name | |
45 out.f = paste(outf, "/table/", sample.name, "CNATable.", rd.cutoff,"rd.", min.bases,"bases.", bins,"bins.txt", sep="") | |
46 pdf.out.f = paste(outf, "/plot/", sample.name, "densityplot.", bins, "bins.pdf", sep="") | |
47 | |
48 # Open and read input files | |
49 # cnAverageFile = paste("bin", bins, ".txt", sep="") | |
50 cnAverageFile = paste(outf,"/buf/bin",bins,".txt",sep="") | |
51 boundariesFile = paste(outf,"/buf/bin",bins,".boundaries.txt",sep="") | |
52 print (cnAverageFile) | |
53 cn.average = read.delim(cnAverageFile, as.is=F, header=F) | |
54 cn.boundary= read.delim(boundariesFile,as.is=F, header=F) | |
55 | |
56 # Apply thresholds and data grouping | |
57 cn.average.aboveTs = cn.average[cn.average$V3>min.bases,] | |
58 cn.average.list = as.matrix(cn.average.aboveTs$V4) | |
59 | |
60 # Get the mean and sd for each bins | |
61 cn.average.mean = c() | |
62 cn.average.sd = c() | |
63 cn.average.log= c() | |
64 | |
65 # Density Plots for each bins | |
66 if (plotoption == "True"){ | |
67 pdf(pdf.out.f) | |
68 } | |
69 for (j in 1:actual.bin){ | |
70 cn.average.nth = as.matrix(cn.average.aboveTs[cn.average.aboveTs$V15==j,]$V4) | |
71 cn.coverage.nth = as.matrix(cn.average.aboveTs[cn.average.aboveTs$V15==j,]$V11) | |
72 boundary.end = cn.boundary[cn.boundary$V1==j,]$V2 | |
73 boundary.start = cn.boundary[cn.boundary$V1==(j-1),]$V2 | |
74 boundary.mid = (boundary.end+boundary.start)/2 | |
75 if (plotoption == "True") { | |
76 plot_title = paste("density: bin", bins, sep="") | |
77 #plot(density(cn.average.nth),xlim=c(-5,5), title=plot_title) | |
78 plot(density(cn.average.nth),xlim=c(-5,5)) | |
79 } | |
80 cn.average.mean = c(cn.average.mean, mean(cn.average.nth)) | |
81 # cn.average.sd = c(cn.average.sd, sd(cn.average.nth)) | |
82 cn.average.sd = c(cn.average.sd, apply(cn.average.nth,2,sd)) | |
83 #cn.average.log = c(cn.average.log, boundary.mid) | |
84 cn.average.log = c(cn.average.log, log(mean(cn.coverage.nth),2)) | |
85 } | |
86 if (plotoption == "True"){ | |
87 dev.off() | |
88 } | |
89 | |
90 # for point outside of boundaries | |
91 if (bins > 1) { | |
92 boundary.first = cn.boundary[cn.boundary$V1==0,]$V2 | |
93 boundary.last = cn.boundary[cn.boundary$V1==bins,]$V2 | |
94 | |
95 b.mean.y2 = cn.average.mean[2] | |
96 b.mean.y1 = cn.average.mean[1] | |
97 b.sd.y2 = cn.average.sd[2] | |
98 b.sd.y1 = cn.average.sd[1] | |
99 b.x2 = cn.average.log[2] | |
100 b.x1 = cn.average.log[1] | |
101 | |
102 boundary.f.mean = (((b.mean.y2- b.mean.y1)/(b.x2-b.x1))*(boundary.first-b.x1))+b.mean.y1 | |
103 boundary.f.sd = (((b.sd.y2- b.sd.y1)/(b.x2-b.x1))*(boundary.first-b.x1))+b.sd.y1 | |
104 | |
105 if (boundary.f.sd < 0){ | |
106 boundary.f.sd = 0 | |
107 } | |
108 | |
109 b.mean.y2 = cn.average.mean[bins] | |
110 b.mean.y1 = cn.average.mean[bins-1] | |
111 b.sd.y2 = cn.average.sd[bins] | |
112 b.sd.y1 = cn.average.sd[bins-1] | |
113 b.x2 = cn.average.log[bins] | |
114 b.x1 = cn.average.log[bins-1] | |
115 | |
116 boundary.l.mean = (((b.mean.y2- b.mean.y1)/(b.x2-b.x1))*(boundary.last-b.x1))+b.mean.y1 | |
117 boundary.l.sd = (((b.sd.y2- b.sd.y1)/(b.x2-b.x1))*(boundary.last-b.x1))+b.sd.y1 | |
118 | |
119 #cn.average.log = c(boundary.first, cn.average.log, boundary.last) | |
120 #cn.linear.mean = c(boundary.f.mean, cn.average.mean, boundary.l.mean) | |
121 #cn.linear.sd = c(boundary.f.sd, cn.average.sd, boundary.l.sd) | |
122 | |
123 cn.average.log = c(boundary.first, cn.average.log) | |
124 cn.linear.mean = c(boundary.f.mean, cn.average.mean) | |
125 cn.linear.sd = c(boundary.f.sd, cn.average.sd) | |
126 | |
127 } | |
128 | |
129 # Linear Interpolation | |
130 if (bins > 1 ){ | |
131 #print(cn.average.log) | |
132 #print(cn.linear.mean) | |
133 #print(cn.linear.sd) | |
134 mean.fn <- approxfun(cn.average.log, cn.linear.mean, rule=2) | |
135 sd.fn <- approxfun(cn.average.log, cn.linear.sd, rule=2) | |
136 } | |
137 | |
138 | |
139 # Put the data's details into matrices | |
140 ids = as.matrix(cn.average.aboveTs$V1) | |
141 exons = as.matrix(cn.average.aboveTs$V6) | |
142 exons.pos = as.matrix(cn.average.aboveTs$V5) | |
143 gs = as.matrix(cn.average.aboveTs$V2) | |
144 number.bases = as.matrix(cn.average.aboveTs$V3) | |
145 mean = as.matrix(cn.average.aboveTs$V4) | |
146 sd = as.matrix(cn.average.aboveTs$V7) | |
147 tumour.rd = as.matrix(cn.average.aboveTs$V8) | |
148 tumour.rd.ori = as.matrix(cn.average.aboveTs$V10) | |
149 normal.rd = as.matrix(cn.average.aboveTs$V9) | |
150 normal.rd.ori = as.matrix(cn.average.aboveTs$V11) | |
151 median = as.matrix(cn.average.aboveTs$V12) | |
152 MinLogRatio = as.matrix(cn.average.aboveTs$V13) | |
153 MaxLogRatio = as.matrix(cn.average.aboveTs$V14) | |
154 Bin = as.matrix(cn.average.aboveTs$V15) | |
155 Chr = as.matrix(cn.average.aboveTs$V16) | |
156 OriStCoordinate = as.matrix(cn.average.aboveTs$V17) | |
157 OriEndCoordinate= as.matrix(cn.average.aboveTs$V18) | |
158 | |
159 # Linear Fit | |
160 logratios.mean = mean | |
161 logcov.mean = log2((normal.rd + tumour.rd)/2) | |
162 fit.mean = lm(logratios.mean ~ logcov.mean) | |
163 fit.x = fit.mean$coefficient[1] | |
164 fit.y = fit.mean$coefficient[2] | |
165 | |
166 adjusted.lr = rep(NA, length(logratios.mean)) | |
167 for (j in 1:length(logratios.mean)){ | |
168 fitted.mean = fit.x + fit.y * logcov.mean[j] | |
169 adjusted.lr[j] = logratios.mean[j] - fitted.mean | |
170 } | |
171 | |
172 fit.mean2 = lm(adjusted.lr ~ logcov.mean) | |
173 fit.mean.a = fit.mean2$coefficient[1] | |
174 fit.mean.b = fit.mean2$coefficient[2] | |
175 | |
176 fit.mean.fn <- function(x, fit.a, fit.b){ | |
177 result = fit.a + fit.b * x | |
178 return (result) | |
179 } | |
180 | |
181 # Adjust SD based on the new adjusted log ratios | |
182 logratios.sd = c() | |
183 logcov.bins.mean= c() | |
184 for (j in 1:actual.bin){ | |
185 lr.bins.mean = as.matrix(adjusted.lr[cn.average.aboveTs$V15==j]) | |
186 # logratios.sd = c(logratios.sd, sd(lr.bins.mean)) | |
187 logratios.sd = c(logratios.sd, apply(lr.bins.mean,2,sd)) | |
188 | |
189 cn.coverage.tumour.nth = as.matrix(cn.average.aboveTs[cn.average.aboveTs$V15==j,]$V8) | |
190 cn.coverage.normal.nth = as.matrix(cn.average.aboveTs[cn.average.aboveTs$V15==j,]$V9) | |
191 cn.coverage.nth = (cn.coverage.tumour.nth + cn.coverage.normal.nth) /2 | |
192 logcov.bins.mean= c(logcov.bins.mean, log2(mean(cn.coverage.nth))) | |
193 | |
194 } | |
195 | |
196 logratios.sd.ori = logratios.sd | |
197 if (length(logratios.sd) > 2) { | |
198 logratios.sd = logratios.sd[-length(logratios.sd)] | |
199 } | |
200 | |
201 logcov.bins.mean.ori = logcov.bins.mean | |
202 if (length(logcov.bins.mean) > 2){ | |
203 logcov.bins.mean= logcov.bins.mean[-length(logcov.bins.mean)] | |
204 } | |
205 | |
206 fit.sd = lm(log2(logratios.sd) ~ logcov.bins.mean) | |
207 fit.sd.a = fit.sd$coefficient[1] | |
208 fit.sd.b = fit.sd$coefficient[2] | |
209 | |
210 fit.sd.fn <- function(x, fit.a, fit.b){ | |
211 result = 2 ^ (fit.mean.fn(x, fit.a, fit.b)) | |
212 return (result) | |
213 } | |
214 | |
215 # Get the P Values, called the gain/loss | |
216 # with average and sd from each bins | |
217 pVal.list = c() | |
218 gain.loss = c() | |
219 | |
220 for (i in 1:nrow(cn.average.list)){ | |
221 #print (i) | |
222 #logratio = cn.average.list[i] | |
223 #logcov = log(normal.rd.ori[i],2) | |
224 logratio = adjusted.lr[i] | |
225 logcov = logcov.mean[i] | |
226 exon.bin = Bin[i] | |
227 | |
228 if (length(logratios.sd) > 1){ | |
229 #pVal <- pnorm(logratio, fit.mean.fn(logcov, fit.mean.a, fit.mean.b), fit.sd.fn(logcov, fit.sd.a, fit.sd.b)) | |
230 pVal <- pnorm(logratio, fit.mean.fn(logcov, fit.mean.a, fit.mean.b), sd.fn(logcov)) | |
231 } else { | |
232 pVal <- pnorm(logratio, 0, logratios.sd[exon.bin]) | |
233 } | |
234 | |
235 if (pVal > 0.5){ | |
236 pVal = 1-pVal | |
237 gain.loss = c(gain.loss, "gain") | |
238 } else { | |
239 gain.loss = c(gain.loss, "loss") | |
240 } | |
241 pVal.list = c(pVal.list, pVal*2) | |
242 } | |
243 | |
244 # Get the adjusted P Values | |
245 adjusted.pVal.list = p.adjust(pVal.list, method="BH") | |
246 | |
247 # Write the output into a tab-delimited text files | |
248 outdf=data.frame(Targeted.Region.ID=ids,Exon.Number=exons,Gene.Sym=gs,Chr, OriStCoordinate, OriEndCoordinate, Mean.of.LogRatio=cn.average.list, Adjusted.Mean.of.LogRatio=adjusted.lr, SD.of.LogRatio=sd, Median.of.LogRatio=median, number.bases, P.Value=pVal.list ,Adjusted.P.Value=adjusted.pVal.list , gain.loss, tumour.rd, normal.rd, tumour.rd.ori, normal.rd.ori, MinLogRatio, MaxLogRatio, BinNumber = Bin) | |
249 | |
250 #min_normal_rd_for_call=5 | |
251 #min_tumour_rd_for_call=0 | |
252 #min_avg_cov_for_call=20 | |
253 outdf$tumour.rd.ori = outdf$tumour.rd.ori-0.5 | |
254 outdf$normal.rd.ori = outdf$normal.rd.ori-0.5 | |
255 wh.to.excl = outdf$normal.rd.ori < min_normal_rd_for_call | |
256 wh.to.excl = wh.to.excl | outdf$tumour.rd.ori < min_tumour_rd_for_call | |
257 wh.to.excl = wh.to.excl | (outdf$tumour.rd.ori+outdf$normal.rd.ori)/2 < min_avg_cov_for_call | |
258 outdf$P.Value[wh.to.excl]=NA | |
259 outdf$Adjusted.P.Value[wh.to.excl]=NA | |
260 | |
261 | |
262 write.table(outdf,out.f,sep="\t",quote=F,row.names=F,col.names=T) | |
263 | |
264 #Plotting SD | |
265 #a.sd.fn = rep(fit.sd.a, length(logratios.sd.ori)) | |
266 #b.sd.fn = rep(fit.sd.b, length(logratios.sd.ori)) | |
267 #sd.after.fit = fit.sd.fn(logcov.bins.mean.ori, fit.sd.a, fit.sd.b) | |
268 #sd.out.f = paste(outf, "/plot/", sample.name, "sd.data_fit.", bins, "bins.txt", sep="") | |
269 #sd.outdf = data.frame(SD.Before.Fit = logratios.sd.ori, Log.Coverage = logcov.bins.mean.ori, SD.After.Fit = sd.after.fit, a.for.fitting=a.sd.fn, b.for.fitting=b.sd.fn) | |
270 #write.table(sd.outdf, sd.out.f,sep="\t", quote=F, row.names=F, col.names=T) | |
271 | |
272 | |
273 #End of the script | |
274 print ("End of cn_analysis.R") | |
275 print (i) | |
276 | |
277 | |
278 |