Mercurial > repos > fcaramia > contra
view Contra/scripts/large_region_cbs.R @ 8:1a5cbabc4cd3
Uploaded
author | fcaramia |
---|---|
date | Sun, 02 Dec 2012 19:48:13 -0500 |
parents | 7564f3b1e675 |
children |
line wrap: on
line source
# ----------------------------------------------------------------------# # Copyright (c) 2011, Richard Lupat & Jason Li. # # > Source License < # This file is part of CONTRA. # # CONTRA is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # CONTRA is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with CONTRA. If not, see <http://www.gnu.org/licenses/>. # # #-----------------------------------------------------------------------# # Last Updated : 12 October 2011 16:43PM library(DNAcopy) options <- commandArgs(trailingOnly = T) logcov.file = options[1] param.small.seg = as.numeric(options[2]) param.large.seg = as.numeric(options[3]) param.pval.cutoff = as.numeric(options[4]) param.pvals.size = as.numeric(options[5]) param.call.low = as.numeric(options[6]) param.call.high = as.numeric(options[7]) bufloc = options[8] #param.small.seg = 1 #param.large.seg = 25 #param.pval.cutoff = 0.1 #param.pvals.size = 0.35 #param.call.low = -0.3 #param.call.high= 0.3 dat = read.delim(logcov.file, as.is=F, header=T) t.id = dat$Targeted.Region.ID t.mean = dat$Adjusted.Mean.of.LogRatio t.chr = dat$Chr cna.dat <- CNA(t.mean, t.chr, t.id, data.type="logratio") smooth.cna.dat = smooth.CNA(cna.dat) kmax.range = c(param.large.seg, param.small.seg) for (i in kmax.range){ out.f = paste(bufloc, "/CBS", i ,".txt", sep="") cna.segment = segment(smooth.cna.dat, kmax = i, verbose = 1) #pdf(paste("segment_", "kmax", i, ".pdf", sep="")) #for (chr.list in unique(t.chr)){ # plotSample(cna.segment, chromlist=chr.list) #} #dev.off() #Get Data cna.segment.out <- cna.segment$output cna.segment.start = c() cna.segment.end = c() cna.segment.mean = c() cna.segment.pvals.size = c() cna.segment.calls = c() for (n in 1:nrow(cna.segment.out)){ cna.start.id = cna.segment.out[n,]$loc.start cna.end.id = cna.segment.out[n,]$loc.end cna.start.coord = dat[dat$Targeted.Region.ID==(cna.start.id),]$OriStCoordinate cna.end.coord = dat[dat$Targeted.Region.ID==(cna.end.id), ]$OriEndCoordinate dat.inrange = dat[dat$Targeted.Region.ID<=cna.end.id&dat$Targeted.Region.ID>=cna.start.id,] cna.segment.logratios = dat.inrange$Adjusted.Mean.of.LogRatio cna.segment.pvalues = dat.inrange$Adjusted.P.Value segment.pvals.above = dat.inrange[dat.inrange$Adjusted.P.Value<=param.pval.cutoff,]$Adjusted.P.Value segment.pvals.size = length(segment.pvals.above)/length(cna.segment.pvalues) cna.segment.mean = c(cna.segment.mean, mean(cna.segment.logratios)) cna.segment.start = c(cna.segment.start, cna.start.coord) cna.segment.end = c(cna.segment.end , cna.end.coord) cna.segment.pvals.size = c(cna.segment.pvals.size, segment.pvals.size) if (segment.pvals.size < param.pvals.size){ #No-Call cna.segment.calls = c(cna.segment.calls, "No") } else { m = mean(cna.segment.logratios) if ((m > param.call.low) && (m < param.call.high)){ #No-Call cna.segment.calls = c(cna.segment.calls, "No") } else { #Call cna.segment.calls = c(cna.segment.calls, "CNV") } } } outdf = data.frame(Chr=cna.segment.out$chrom, Target.Start=cna.segment.out$loc.start, Target.End=cna.segment.out$loc.end, NumberOfTargets=cna.segment.out$num.mark, OriStCoordinate=cna.segment.start, OriEndCoordinate=cna.segment.end, CBS.Mean = cna.segment.out$seg.mean, LogRatios = cna.segment.mean, Above.PValues.Cutoff=cna.segment.pvals.size, Calls = cna.segment.calls) write.table(outdf, out.f, sep="\t", quote=F, row.names=F, col.names=T) } small.dat.f = paste(bufloc, "/CBS", param.small.seg ,".txt", sep="") large.dat.f = paste(bufloc, "/CBS", param.large.seg ,".txt", sep="") small.dat = read.delim(small.dat.f, as.is=F, header=T) large.dat = read.delim(large.dat.f, as.is=F, header=T) large.nocall = large.dat[large.dat$Calls=="No",] small.call = small.dat[small.dat$Calls!="No",] included.segment= large.dat[large.dat$Calls!="No",] for (i in 1:nrow(small.call)){ small.segment = small.call[i, ] chr.small = small.segment$Chr start.small = small.segment$Target.Start end.small = small.segment$Target.End match.large.nocall = large.nocall[large.nocall$Chr==chr.small,] match.large.nocall = match.large.nocall[match.large.nocall$Target.End>=start.small,] match.large.nocall = match.large.nocall[match.large.nocall$Target.Start<=start.small,] merged.hole = match.large.nocall[match.large.nocall$Target.End>=start.small,] if (nrow(merged.hole) > 0){ included.segment = merge(included.segment, small.segment, all=T) } } out.f = paste(logcov.file, ".LargeDeletion.txt", sep="") write.table(included.segment, out.f, sep="\t", quote=F, row.names=F)