Mercurial > repos > fcaramia > contra
view Contra/scripts/cn_analysis.v3.R @ 19:c16f0f778211
Uploaded
author | fcaramia |
---|---|
date | Sun, 23 Dec 2012 18:57:23 -0500 |
parents | 7564f3b1e675 |
children |
line wrap: on
line source
# ----------------------------------------------------------------------# # Copyright (c) 2011, Richard Lupat & Jason Li. # # > Source License < # This file is part of CONTRA. # # CONTRA is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # CONTRA is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with CONTRA. If not, see <http://www.gnu.org/licenses/>. # # #-----------------------------------------------------------------------# # Last Updated : 31 Oct 2011 17:00PM # Parameters Parsing (from Command Line) options <- commandArgs(trailingOnly = T) bins = as.integer(options[1]) rd.cutoff = as.integer(options[2]) min.bases = as.integer(options[3]) outf = options[4] sample.name = options[5] plotoption = options[6] actual.bin = as.numeric(options[7]) min_normal_rd_for_call = as.numeric(options[8]) min_tumour_rd_for_call = as.numeric(options[9]) min_avg_cov_for_call = as.numeric(options[10]) if (sample.name == "No-SampleName") sample.name = "" if (sample.name != "") sample.name = paste(sample.name, ".", sep="") # Setup output name out.f = paste(outf, "/table/", sample.name, "CNATable.", rd.cutoff,"rd.", min.bases,"bases.", bins,"bins.txt", sep="") pdf.out.f = paste(outf, "/plot/", sample.name, "densityplot.", bins, "bins.pdf", sep="") # Open and read input files # cnAverageFile = paste("bin", bins, ".txt", sep="") cnAverageFile = paste(outf,"/buf/bin",bins,".txt",sep="") boundariesFile = paste(outf,"/buf/bin",bins,".boundaries.txt",sep="") print (cnAverageFile) cn.average = read.delim(cnAverageFile, as.is=F, header=F) cn.boundary= read.delim(boundariesFile,as.is=F, header=F) # Apply thresholds and data grouping cn.average.aboveTs = cn.average[cn.average$V3>min.bases,] cn.average.list = as.matrix(cn.average.aboveTs$V4) # Get the mean and sd for each bins cn.average.mean = c() cn.average.sd = c() cn.average.log= c() # Density Plots for each bins if (plotoption == "True"){ pdf(pdf.out.f) } for (j in 1:actual.bin){ cn.average.nth = as.matrix(cn.average.aboveTs[cn.average.aboveTs$V15==j,]$V4) cn.coverage.nth = as.matrix(cn.average.aboveTs[cn.average.aboveTs$V15==j,]$V11) boundary.end = cn.boundary[cn.boundary$V1==j,]$V2 boundary.start = cn.boundary[cn.boundary$V1==(j-1),]$V2 boundary.mid = (boundary.end+boundary.start)/2 if (plotoption == "True") { plot_title = paste("density: bin", bins, sep="") #plot(density(cn.average.nth),xlim=c(-5,5), title=plot_title) plot(density(cn.average.nth),xlim=c(-5,5)) } cn.average.mean = c(cn.average.mean, mean(cn.average.nth)) # cn.average.sd = c(cn.average.sd, sd(cn.average.nth)) cn.average.sd = c(cn.average.sd, apply(cn.average.nth,2,sd)) #cn.average.log = c(cn.average.log, boundary.mid) cn.average.log = c(cn.average.log, log(mean(cn.coverage.nth),2)) } if (plotoption == "True"){ dev.off() } # for point outside of boundaries if (bins > 1) { boundary.first = cn.boundary[cn.boundary$V1==0,]$V2 boundary.last = cn.boundary[cn.boundary$V1==bins,]$V2 b.mean.y2 = cn.average.mean[2] b.mean.y1 = cn.average.mean[1] b.sd.y2 = cn.average.sd[2] b.sd.y1 = cn.average.sd[1] b.x2 = cn.average.log[2] b.x1 = cn.average.log[1] boundary.f.mean = (((b.mean.y2- b.mean.y1)/(b.x2-b.x1))*(boundary.first-b.x1))+b.mean.y1 boundary.f.sd = (((b.sd.y2- b.sd.y1)/(b.x2-b.x1))*(boundary.first-b.x1))+b.sd.y1 if (boundary.f.sd < 0){ boundary.f.sd = 0 } b.mean.y2 = cn.average.mean[bins] b.mean.y1 = cn.average.mean[bins-1] b.sd.y2 = cn.average.sd[bins] b.sd.y1 = cn.average.sd[bins-1] b.x2 = cn.average.log[bins] b.x1 = cn.average.log[bins-1] boundary.l.mean = (((b.mean.y2- b.mean.y1)/(b.x2-b.x1))*(boundary.last-b.x1))+b.mean.y1 boundary.l.sd = (((b.sd.y2- b.sd.y1)/(b.x2-b.x1))*(boundary.last-b.x1))+b.sd.y1 #cn.average.log = c(boundary.first, cn.average.log, boundary.last) #cn.linear.mean = c(boundary.f.mean, cn.average.mean, boundary.l.mean) #cn.linear.sd = c(boundary.f.sd, cn.average.sd, boundary.l.sd) cn.average.log = c(boundary.first, cn.average.log) cn.linear.mean = c(boundary.f.mean, cn.average.mean) cn.linear.sd = c(boundary.f.sd, cn.average.sd) } # Linear Interpolation if (bins > 1 ){ #print(cn.average.log) #print(cn.linear.mean) #print(cn.linear.sd) mean.fn <- approxfun(cn.average.log, cn.linear.mean, rule=2) sd.fn <- approxfun(cn.average.log, cn.linear.sd, rule=2) } # Put the data's details into matrices ids = as.matrix(cn.average.aboveTs$V1) exons = as.matrix(cn.average.aboveTs$V6) exons.pos = as.matrix(cn.average.aboveTs$V5) gs = as.matrix(cn.average.aboveTs$V2) number.bases = as.matrix(cn.average.aboveTs$V3) mean = as.matrix(cn.average.aboveTs$V4) sd = as.matrix(cn.average.aboveTs$V7) tumour.rd = as.matrix(cn.average.aboveTs$V8) tumour.rd.ori = as.matrix(cn.average.aboveTs$V10) normal.rd = as.matrix(cn.average.aboveTs$V9) normal.rd.ori = as.matrix(cn.average.aboveTs$V11) median = as.matrix(cn.average.aboveTs$V12) MinLogRatio = as.matrix(cn.average.aboveTs$V13) MaxLogRatio = as.matrix(cn.average.aboveTs$V14) Bin = as.matrix(cn.average.aboveTs$V15) Chr = as.matrix(cn.average.aboveTs$V16) OriStCoordinate = as.matrix(cn.average.aboveTs$V17) OriEndCoordinate= as.matrix(cn.average.aboveTs$V18) # Linear Fit logratios.mean = mean logcov.mean = log2((normal.rd + tumour.rd)/2) fit.mean = lm(logratios.mean ~ logcov.mean) fit.x = fit.mean$coefficient[1] fit.y = fit.mean$coefficient[2] adjusted.lr = rep(NA, length(logratios.mean)) for (j in 1:length(logratios.mean)){ fitted.mean = fit.x + fit.y * logcov.mean[j] adjusted.lr[j] = logratios.mean[j] - fitted.mean } fit.mean2 = lm(adjusted.lr ~ logcov.mean) fit.mean.a = fit.mean2$coefficient[1] fit.mean.b = fit.mean2$coefficient[2] fit.mean.fn <- function(x, fit.a, fit.b){ result = fit.a + fit.b * x return (result) } # Adjust SD based on the new adjusted log ratios logratios.sd = c() logcov.bins.mean= c() for (j in 1:actual.bin){ lr.bins.mean = as.matrix(adjusted.lr[cn.average.aboveTs$V15==j]) # logratios.sd = c(logratios.sd, sd(lr.bins.mean)) logratios.sd = c(logratios.sd, apply(lr.bins.mean,2,sd)) cn.coverage.tumour.nth = as.matrix(cn.average.aboveTs[cn.average.aboveTs$V15==j,]$V8) cn.coverage.normal.nth = as.matrix(cn.average.aboveTs[cn.average.aboveTs$V15==j,]$V9) cn.coverage.nth = (cn.coverage.tumour.nth + cn.coverage.normal.nth) /2 logcov.bins.mean= c(logcov.bins.mean, log2(mean(cn.coverage.nth))) } logratios.sd.ori = logratios.sd if (length(logratios.sd) > 2) { logratios.sd = logratios.sd[-length(logratios.sd)] } logcov.bins.mean.ori = logcov.bins.mean if (length(logcov.bins.mean) > 2){ logcov.bins.mean= logcov.bins.mean[-length(logcov.bins.mean)] } fit.sd = lm(log2(logratios.sd) ~ logcov.bins.mean) fit.sd.a = fit.sd$coefficient[1] fit.sd.b = fit.sd$coefficient[2] fit.sd.fn <- function(x, fit.a, fit.b){ result = 2 ^ (fit.mean.fn(x, fit.a, fit.b)) return (result) } # Get the P Values, called the gain/loss # with average and sd from each bins pVal.list = c() gain.loss = c() for (i in 1:nrow(cn.average.list)){ #print (i) #logratio = cn.average.list[i] #logcov = log(normal.rd.ori[i],2) logratio = adjusted.lr[i] logcov = logcov.mean[i] exon.bin = Bin[i] if (length(logratios.sd) > 1){ #pVal <- pnorm(logratio, fit.mean.fn(logcov, fit.mean.a, fit.mean.b), fit.sd.fn(logcov, fit.sd.a, fit.sd.b)) pVal <- pnorm(logratio, fit.mean.fn(logcov, fit.mean.a, fit.mean.b), sd.fn(logcov)) } else { pVal <- pnorm(logratio, 0, logratios.sd[exon.bin]) } if (pVal > 0.5){ pVal = 1-pVal gain.loss = c(gain.loss, "gain") } else { gain.loss = c(gain.loss, "loss") } pVal.list = c(pVal.list, pVal*2) } # Get the adjusted P Values adjusted.pVal.list = p.adjust(pVal.list, method="BH") # Write the output into a tab-delimited text files outdf=data.frame(Targeted.Region.ID=ids,Exon.Number=exons,Gene.Sym=gs,Chr, OriStCoordinate, OriEndCoordinate, Mean.of.LogRatio=cn.average.list, Adjusted.Mean.of.LogRatio=adjusted.lr, SD.of.LogRatio=sd, Median.of.LogRatio=median, number.bases, P.Value=pVal.list ,Adjusted.P.Value=adjusted.pVal.list , gain.loss, tumour.rd, normal.rd, tumour.rd.ori, normal.rd.ori, MinLogRatio, MaxLogRatio, BinNumber = Bin) #min_normal_rd_for_call=5 #min_tumour_rd_for_call=0 #min_avg_cov_for_call=20 outdf$tumour.rd.ori = outdf$tumour.rd.ori-0.5 outdf$normal.rd.ori = outdf$normal.rd.ori-0.5 wh.to.excl = outdf$normal.rd.ori < min_normal_rd_for_call wh.to.excl = wh.to.excl | outdf$tumour.rd.ori < min_tumour_rd_for_call wh.to.excl = wh.to.excl | (outdf$tumour.rd.ori+outdf$normal.rd.ori)/2 < min_avg_cov_for_call outdf$P.Value[wh.to.excl]=NA outdf$Adjusted.P.Value[wh.to.excl]=NA write.table(outdf,out.f,sep="\t",quote=F,row.names=F,col.names=T) #Plotting SD #a.sd.fn = rep(fit.sd.a, length(logratios.sd.ori)) #b.sd.fn = rep(fit.sd.b, length(logratios.sd.ori)) #sd.after.fit = fit.sd.fn(logcov.bins.mean.ori, fit.sd.a, fit.sd.b) #sd.out.f = paste(outf, "/plot/", sample.name, "sd.data_fit.", bins, "bins.txt", sep="") #sd.outdf = data.frame(SD.Before.Fit = logratios.sd.ori, Log.Coverage = logcov.bins.mean.ori, SD.After.Fit = sd.after.fit, a.for.fitting=a.sd.fn, b.for.fitting=b.sd.fn) #write.table(sd.outdf, sd.out.f,sep="\t", quote=F, row.names=F, col.names=T) #End of the script print ("End of cn_analysis.R") print (i)