Mercurial > repos > fcaramia > edger
comparison edgeR.pl @ 2:674c75219f15 draft
Uploaded
author | fcaramia |
---|---|
date | Wed, 12 Sep 2012 23:44:45 -0400 |
parents | |
children | e5fcbabbdea7 |
comparison
equal
deleted
inserted
replaced
1:457a02a69f4d | 2:674c75219f15 |
---|---|
1 #/bin/perl | |
2 | |
3 use strict; | |
4 use warnings; | |
5 use Getopt::Std; | |
6 use File::Basename; | |
7 use File::Path qw(make_path remove_tree); | |
8 $| = 1; | |
9 | |
10 # Grab and set all options | |
11 my %OPTIONS = (a => "glm", d => "tag", f => "BH", p => 0.3, r => 5, u => "movingave"); | |
12 | |
13 getopts('a:d:e:f:h:lmn:o:p:r:tu:', \%OPTIONS); | |
14 | |
15 die qq( | |
16 Usage: edgeR.pl [OPTIONS] factor::factor1::levels [factor::factor2::levels ...] cp::cont_pred1::values [cp::cont_pred2::values ...] cnt::contrast1 [cnt::contrast2] matrix | |
17 | |
18 OPTIONS: -a STR Type Of Analysis [glm, pw, limma] (default: $OPTIONS{a}) | |
19 -d STR The dispersion estimate to use for GLM analysis [tag, trend, common] (default: $OPTIONS{d}) | |
20 -e STR Path to place additional output files | |
21 -f STR False discovery rate adjustment method [BH, holm, hochberg, hommel, BY, none] (default: $OPTIONS{f}) | |
22 -h STR Name of html file for additional files | |
23 -l Output the normalised digital gene expression matrix in log2 format (only applicable when using limma and -n is also specified) | |
24 -m Perform all pairwise comparisons | |
25 -n STR File name to output the normalised digital gene expression matrix (only applicable when usinf glm or limma model) | |
26 -o STR File name to output csv file with results | |
27 -p FLT The proportion of all tags/genes to be used for the locally weighted estimation of the tagwise dispersion, ony applicable when 1 factor analysis selected (default: $OPTIONS{p}) | |
28 -r INT Common Dispersion Rowsum Filter, ony applicable when 1 factor analysis selected (default: $OPTIONS{r}) | |
29 -t Estimate Tagwise Disp when performing 1 factor analysis | |
30 -u STR Method for allowing the prior distribution for the dispersion to be abundance- dependent ["movingave", "tricube", "none"] (default: $OPTIONS{u}) | |
31 | |
32 ) if(!@ARGV); | |
33 | |
34 my $matrix = pop @ARGV; | |
35 | |
36 make_path($OPTIONS{e}); | |
37 open(Rcmd,">$OPTIONS{e}/r_script.R") or die "Cannot open $OPTIONS{e}/r_script.R\n\n"; | |
38 print Rcmd " | |
39 zz <- file(\"$OPTIONS{e}/r_script.err\", open=\"wt\") | |
40 sink(zz) | |
41 sink(zz, type=\"message\") | |
42 | |
43 library(edgeR) | |
44 library(limma) | |
45 | |
46 # read in matrix and groups | |
47 toc <- read.table(\"$matrix\", sep=\"\\t\", comment=\"\", as.is=T) | |
48 groups <- sapply(toc[1, -1], strsplit, \":\") | |
49 for(i in 1:length(groups)) { g <- make.names(groups[[i]][2]); names(groups)[i] <- g; groups[[i]] <- groups[[i]][-2] } | |
50 colnames(toc) <- make.names(toc[2,]) | |
51 toc[,1] <- gsub(\",\", \".\", toc[,1]) | |
52 tagnames <- toc[-(1:2), 1] | |
53 rownames(toc) <- toc[,1] | |
54 toc <- toc[-(1:2), -1] | |
55 for(i in colnames(toc)) toc[, i] <- as.numeric(toc[,i]) | |
56 norm_factors <- calcNormFactors(as.matrix(toc)) | |
57 | |
58 pw_tests <- list() | |
59 uniq_groups <- unique(names(groups)) | |
60 for(i in 1:(length(uniq_groups)-1)) for(j in (i+1):length(uniq_groups)) pw_tests[[length(pw_tests)+1]] <- c(uniq_groups[i], uniq_groups[j]) | |
61 DGE <- DGEList(toc, lib.size=norm_factors*colSums(toc), group=names(groups)) | |
62 pdf(\"$OPTIONS{e}/MA_plots_normalisation.pdf\", width=14) | |
63 for(i in 1:length(pw_tests)) { | |
64 j <- c(which(names(groups) == pw_tests[[i]][1])[1], which(names(groups) == pw_tests[[i]][2])[1]) | |
65 par(mfrow = c(1, 2)) | |
66 maPlot(toc[, j[1]], toc[, j[2]], normalize = TRUE, pch = 19, cex = 0.2, ylim = c(-10, 10), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]])) | |
67 grid(col = \"blue\") | |
68 abline(h = log2(norm_factors[j[2]]), col = \"red\", lwd = 4) | |
69 maPlot(DGE\$counts[, j[1]]/DGE\$samples\$lib.size[j[1]], DGE\$counts[, j[2]]/DGE\$samples\$lib.size[j[2]], normalize = FALSE, pch = 19, cex = 0.2, ylim = c(-8, 8), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]], \"Normalised\")) | |
70 grid(col = \"blue\") | |
71 } | |
72 dev.off() | |
73 pdf(file=\"$OPTIONS{e}/MDSplot.pdf\") | |
74 plotMDS(DGE, main=\"MDS Plot\", col=as.numeric(factor(names(groups)))+1, xlim=c(-3,3)) | |
75 dev.off() | |
76 tested <- list() | |
77 "; | |
78 | |
79 my $all_cont; | |
80 my @add_cont; | |
81 my @fact; | |
82 my @fact_names; | |
83 my @cp; | |
84 my @cp_names; | |
85 if(@ARGV) { | |
86 foreach my $input (@ARGV) { | |
87 my @tmp = split "::", $input; | |
88 if($tmp[0] eq "factor") { | |
89 $tmp[1] =~ s/[ \?\(\)\[\]\/\\=+<>:;\"\',\*\^\|\&-]/./g; | |
90 push @fact_names, $tmp[1]; | |
91 $tmp[2] =~ s/:/\", \"/g; | |
92 $tmp[2] = "\"".$tmp[2]."\""; | |
93 push @fact, $tmp[2]; | |
94 } elsif($tmp[0] eq "cp") { | |
95 $tmp[1] =~ s/[ \?\(\)\[\]\/\\=+<>:;\"\',\*\^\|\&-]/./g; | |
96 push @cp_names, $tmp[1]; | |
97 $tmp[2] =~ s/:/, /g; | |
98 push @cp, $tmp[2]; | |
99 } elsif($tmp[0] eq "cnt") { | |
100 push @add_cont, $tmp[1]; | |
101 } else { | |
102 die("Unknown Input: $input\n"); | |
103 } | |
104 } | |
105 } | |
106 | |
107 if($OPTIONS{a} eq "pw") { | |
108 print Rcmd " | |
109 disp <- estimateCommonDisp(DGE, rowsum.filter=$OPTIONS{r}) | |
110 "; | |
111 if(defined $OPTIONS{t}) { | |
112 print Rcmd " | |
113 disp <- estimateTagwiseDisp(disp, trend=\"$OPTIONS{u}\", prop.used=$OPTIONS{p}) | |
114 pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\") | |
115 plot(log2(1e06*disp\$conc\$conc.common), disp\$tagwise.dispersion, xlab=\"Counts per million (log2 scale)\", ylab=\"Tagwise dispersion\") | |
116 abline(h=disp\$common.dispersion, col=\"firebrick\", lwd=3) | |
117 dev.off() | |
118 " | |
119 } | |
120 print Rcmd " | |
121 for(i in 1:length(pw_tests)) { | |
122 tested[[i]] <- exactTest(disp, pair=pw_tests[[i]]) | |
123 names(tested)[i] <- paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\") | |
124 } | |
125 pdf(file=\"$OPTIONS{e}/Smear_Plots.pdf\") | |
126 for(i in 1:length(pw_tests)) { | |
127 if(nrow(decideTestsDGE(tested[[i]] , p.value=0.05)) > 0) { | |
128 de_tags <- rownames(decideTestsDGE(tested[[i]] , p.value=0.05, adjust.method=\"$OPTIONS{f}\")) | |
129 ttl <- \"(Diff. Exp. Genes With adj. Pvalue < 0.05 highlighted)\" | |
130 } else { | |
131 de_tags <- rownames(topTags(tested[[i]], n=100)\$table) | |
132 ttl <- \"(Top 100 tags highlighted)\" | |
133 } | |
134 | |
135 plotSmear(disp, pair=pw_tests[[i]], de.tags = de_tags, main = paste(\"FC plot\", ttl)) | |
136 abline(h = c(-2, 2), col = \"dodgerblue\") | |
137 } | |
138 dev.off() | |
139 "; | |
140 } elsif($OPTIONS{a} eq "glm") { | |
141 for(my $fct = 0; $fct <= $#fact_names; $fct++) { | |
142 print Rcmd " | |
143 $fact_names[$fct] <- c($fact[$fct]) | |
144 "; | |
145 } | |
146 for(my $fct = 0; $fct <= $#cp_names; $fct++) { | |
147 print Rcmd " | |
148 $cp_names[$fct] <- c($cp[$fct]) | |
149 "; | |
150 } | |
151 my $all_fact = ""; | |
152 if(@fact_names) { | |
153 foreach (@fact_names) { | |
154 $all_fact .= " + factor($_)"; | |
155 } | |
156 } | |
157 my $all_cp = ""; | |
158 if(@cp_names) { | |
159 $all_cp = " + ".join(" + ", @cp_names); | |
160 } | |
161 print Rcmd " | |
162 group_fact <- factor(names(groups)) | |
163 design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp}) | |
164 colnames(design) <- sub(\"group_fact\", \"\", colnames(design)) | |
165 "; | |
166 foreach my $fct (@fact_names) { | |
167 print Rcmd " | |
168 colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design))) | |
169 "; | |
170 } | |
171 print Rcmd " | |
172 disp <- estimateGLMCommonDisp(DGE, design) | |
173 "; | |
174 if($OPTIONS{d} eq "tag" || $OPTIONS{d} eq "trend") { | |
175 print Rcmd " | |
176 disp <- estimateGLMTrendedDisp(disp, design) | |
177 "; | |
178 } | |
179 if($OPTIONS{d} eq "tag") { | |
180 print Rcmd " | |
181 disp <- estimateGLMTagwiseDisp(disp, design) | |
182 fit <- glmFit(disp, design) | |
183 pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\") | |
184 plot(fit\$abund+log(1e06), sqrt(disp\$tagwise.dispersion), xlab=\"Counts per million (log2 scale)\", ylab=\"Tagwise dispersion\") | |
185 oo <- order(disp\$abundance) | |
186 lines(fit\$abundance[oo]+log(1e06), sqrt(disp\$trended.dispersion[oo]), col=\"dodgerblue\", lwd=3) | |
187 abline(h=sqrt(disp\$common.dispersion), col=\"firebrick\", lwd=3) | |
188 dev.off() | |
189 "; | |
190 } | |
191 if(@add_cont) { | |
192 $all_cont = "\"".join("\", \"", @add_cont)."\""; | |
193 print Rcmd " | |
194 cont <- c(${all_cont}) | |
195 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont) | |
196 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont) | |
197 "; | |
198 } else { | |
199 print Rcmd " | |
200 cont <- NULL | |
201 "; | |
202 } | |
203 if(defined $OPTIONS{m}) { | |
204 print Rcmd " | |
205 for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\")) | |
206 "; | |
207 } | |
208 if(!defined $OPTIONS{m} && !@add_cont){ | |
209 die("No Contrasts have been specified, you must at least either select multiple pairwise comparisons or specify a custom contrast\n"); | |
210 } | |
211 print Rcmd " | |
212 fit <- glmFit(disp, design) | |
213 cont <- makeContrasts(contrasts=cont, levels=design) | |
214 for(i in colnames(cont)) tested[[i]] <- glmLRT(disp, fit, contrast=cont[,i]) | |
215 "; | |
216 if(defined $OPTIONS{n}) { | |
217 print Rcmd " | |
218 tab <- data.frame(ID=rownames(fit\$fitted.values), fit\$fitted.values, stringsAsFactors=F) | |
219 write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F) | |
220 "; | |
221 } | |
222 } elsif($OPTIONS{a} eq "limma") { | |
223 for(my $fct = 0; $fct <= $#fact_names; $fct++) { | |
224 print Rcmd " | |
225 $fact_names[$fct] <- c($fact[$fct]) | |
226 "; | |
227 } | |
228 for(my $fct = 0; $fct <= $#cp_names; $fct++) { | |
229 print Rcmd " | |
230 $cp_names[$fct] <- c($cp[$fct]) | |
231 "; | |
232 } | |
233 my $all_fact = ""; | |
234 if(@fact_names) { | |
235 foreach (@fact_names) { | |
236 $all_fact .= " + factor($_)"; | |
237 } | |
238 } | |
239 my $all_cp = ""; | |
240 if(@cp_names) { | |
241 $all_cp = " + ".join(" + ", @cp_names); | |
242 } | |
243 print Rcmd " | |
244 group_fact <- factor(names(groups)) | |
245 design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp}) | |
246 colnames(design) <- sub(\"group_fact\", \"\", colnames(design)) | |
247 "; | |
248 foreach my $fct (@fact_names) { | |
249 print Rcmd " | |
250 colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design))) | |
251 "; | |
252 } | |
253 print Rcmd " | |
254 isexpr <- rowSums(cpm(toc)>1) >= 2 | |
255 toc <- toc[isexpr, ] | |
256 pdf(file=\"$OPTIONS{e}/LIMMA_voom.pdf\") | |
257 y <- voom(toc, design, plot=TRUE, lib.size=colSums(toc)*norm_factors) | |
258 dev.off() | |
259 | |
260 pdf(file=\"$OPTIONS{e}/LIMMA_MDS_plot.pdf\") | |
261 plotMDS(y, labels=colnames(toc), col=as.numeric(factor(names(groups)))+1, gene.selection=\"common\") | |
262 dev.off() | |
263 fit <- lmFit(y, design) | |
264 "; | |
265 if(defined $OPTIONS{n}) { | |
266 if(defined $OPTIONS{l}) { | |
267 print Rcmd " | |
268 tab <- data.frame(ID=rownames(y\$E), y\$E, stringsAsFactors=F) | |
269 "; | |
270 } else { | |
271 print Rcmd " | |
272 tab <- data.frame(ID=rownames(y\$E), 2^y\$E, stringsAsFactors=F) | |
273 "; | |
274 } | |
275 print Rcmd " | |
276 write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F) | |
277 "; | |
278 } | |
279 if(@add_cont) { | |
280 $all_cont = "\"".join("\", \"", @add_cont)."\""; | |
281 print Rcmd " | |
282 cont <- c(${all_cont}) | |
283 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont) | |
284 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont) | |
285 "; | |
286 } else { | |
287 print Rcmd " | |
288 cont <- NULL | |
289 "; | |
290 } | |
291 if(defined $OPTIONS{m}) { | |
292 print Rcmd " | |
293 for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\")) | |
294 "; | |
295 } | |
296 if(!defined $OPTIONS{m} && !@add_cont){ | |
297 die("No Contrasts have been specified, you must at least either select multiple pairwise comparisons or specify a custom contrast\n"); | |
298 } | |
299 print Rcmd " | |
300 cont <- makeContrasts(contrasts=cont, levels=design) | |
301 fit2 <- contrasts.fit(fit, cont) | |
302 fit2 <- eBayes(fit2) | |
303 "; | |
304 } else { | |
305 die("Anaysis type $OPTIONS{a} not found\n"); | |
306 | |
307 } | |
308 | |
309 if($OPTIONS{a} ne "limma") { | |
310 print Rcmd " | |
311 options(digits = 6) | |
312 tab <- NULL | |
313 for(i in names(tested)) { | |
314 tab_tmp <- topTags(tested[[i]], n=Inf, adjust.method=\"$OPTIONS{f}\")[[1]] | |
315 colnames(tab_tmp) <- paste(i, colnames(tab_tmp), sep=\":\") | |
316 tab_tmp <- tab_tmp[tagnames,] | |
317 if(is.null(tab)) { | |
318 tab <- tab_tmp | |
319 } else tab <- cbind(tab, tab_tmp) | |
320 } | |
321 tab <- cbind(Feature=rownames(tab), tab) | |
322 "; | |
323 } else { | |
324 print Rcmd " | |
325 tab <- NULL | |
326 options(digits = 6) | |
327 for(i in colnames(fit2)) { | |
328 tab_tmp <- topTable(fit2, coef=i, n=Inf, sort.by=\"none\", adjust.method=\"$OPTIONS{f}\") | |
329 colnames(tab_tmp)[-1] <- paste(i, colnames(tab_tmp)[-1], sep=\":\") | |
330 if(is.null(tab)) { | |
331 tab <- tab_tmp | |
332 } else tab <- cbind(tab, tab_tmp[,-1]) | |
333 } | |
334 "; | |
335 } | |
336 print Rcmd " | |
337 write.table(tab, \"$OPTIONS{o}\", quote=F, sep=\"\\t\", row.names=F) | |
338 sink(type=\"message\") | |
339 sink() | |
340 "; | |
341 close(Rcmd); | |
342 system("R --no-restore --no-save --no-readline < $OPTIONS{e}/r_script.R > $OPTIONS{e}/r_script.out"); | |
343 | |
344 open(HTML, ">$OPTIONS{h}"); | |
345 print HTML "<html><head><title>EdgeR: Empirical analysis of digital gene expression data</title></head><body><h3>EdgeR Additional Files:</h3><p><ul>\n"; | |
346 print HTML "<li><a href=MA_plots_normalisation.pdf>MA_plots_normalisation.pdf</a></li>\n"; | |
347 print HTML "<li><a href=MDSplot.pdf>MDSplot.pdf</a></li>\n"; | |
348 if($OPTIONS{a} eq "pw") { | |
349 if(defined $OPTIONS{t}) { | |
350 print HTML "<li><a href=Tagwise_Dispersion_vs_Abundance.pdf>Tagwise_Dispersion_vs_Abundance.pdf</a></li>\n"; | |
351 } | |
352 print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n"; | |
353 } elsif($OPTIONS{a} eq "glm" && $OPTIONS{d} eq "tag") { | |
354 print HTML "<li><a href=Tagwise_Dispersion_vs_Abundance.pdf>Tagwise_Dispersion_vs_Abundance.pdf</a></li>\n"; | |
355 } elsif($OPTIONS{a} eq "limma") { | |
356 print HTML "<li><a href=LIMMA_MDS_plot.pdf>LIMMA_MDS_plot.pdf</a></li>\n"; | |
357 print HTML "<li><a href=LIMMA_voom.pdf>LIMMA_voom.pdf</a></li>\n"; | |
358 } | |
359 print HTML "<li><a href=r_script.R>r_script.R</a></li>\n"; | |
360 print HTML "<li><a href=r_script.out>r_script.out</a></li>\n"; | |
361 print HTML "<li><a href=r_script.err>r_script.err</a></li>\n"; | |
362 print HTML "</ul></p>\n"; | |
363 close(HTML); | |
364 |