Mercurial > repos > fcaramia > methylation_analysis_bismark
view methylation_analysis/differential_methylation.R @ 6:4f09ae8138d1 draft
Uploaded
author | fcaramia |
---|---|
date | Mon, 03 Dec 2012 18:27:21 -0500 |
parents | 282edadee017 |
children |
line wrap: on
line source
#!/usr/bin/Rscript --vanilla library(getopt) spec <- matrix(c("help", "h", 0, "logical", "view this help", "segfile1", "s", 1, "character", "seg file 1", "segfile2", "t", 1, "character", "seg file 2", "output", "o", 1, "character", "output file", "fdr", "f", 2, "character", paste("fdr method [", paste(p.adjust.methods, collapse="|"), "]", sep=""), "reference", "r", 2, "character", "reference to use [b37|hg19|GRCh37|mm9|NCBIM37|mm10|GRCm38|dm3|BDGP5]", "annot", "a", 2, "character", "annotation to add [both|gene|cpg]", "processes", "p", 2, "integer", "number of cluster instances to open [1]"), ncol=5, byrow=T) opt <- getopt(spec) # set default options if(is.null(opt$fdr)) opt$fdr <- "BH" if(is.null(opt$reference)) opt$reference <- "hg19" if(is.null(opt$annot)) opt$annot <- "both" if(is.null(opt$processes)) opt$processes <- 1 # check if any invalid options if(! opt$annot %in% c("both", "gene", "cpg") || !opt$fdr %in% p.adjust.methods || !opt$reference %in% c("b37", "hg19", "GRCh37", "mm9", "NCBIM37", "mm10", "GRCm38", "dm3", "BDGP5")) { opt$help <- 1 } # print help file if any incorrect if(!is.null(opt$help) || is.null(opt$segfile1) || is.null(opt$output) || is.null(opt$output) || is.na(opt$processes)) { self = commandArgs()[1]; cat(getopt(spec, usage=T, command="differential_methylation.R")) q(status=1) } library(snow) cl <- makeCluster(opt$p, type = "MPI") segfile1 <- read.table(opt$segfile1, sep="\t", as.is=T, head=T, quote = "") segfile2 <- read.table(opt$segfile2, sep="\t", as.is=T, head=T, quote = "") rownames(segfile1) <- paste(segfile1[,2], ":", segfile1[,3], "-", segfile1[,4], sep="") rownames(segfile2) <- paste(segfile2[,2], ":", segfile2[,3], "-", segfile2[,4], sep="") common_reg <- intersect(rownames(segfile1), rownames(segfile2)) prop_test <- function(x, n, fdr) { library(abind) ESTIMATE <- x/n DELTA <- ESTIMATE[,1L] - ESTIMATE[,2L] YATES <- pmin(abs(DELTA)/rowSums(1/n), 0.5) p <- rowSums(x)/rowSums(n) df <- 1 x <- abind(x, n - x, along=3) E <- abind(n*p, n*(1-p), along=3) STATISTIC <- rowSums((abs(x - E) - YATES)^2/E) STATISTIC[is.na(STATISTIC)] <- 0 PVAL <- pchisq(STATISTIC, df, lower.tail = FALSE) return(data.frame(X_Squared = round(STATISTIC, 3), P.value= round(PVAL, 6), P.adjusted = round(p.adjust(PVAL, method=fdr), 6))) } results <- prop_test(cbind(segfile1[common_reg, "Methylated"], segfile2[common_reg, "Methylated"]), cbind(segfile1[common_reg, "Total"], segfile2[common_reg, "Total"]), opt$fdr) sample1 <- segfile1[1, 1] sample2 <- segfile2[1, 1] tab_out <- data.frame(ID = paste(sample1, "vs", sample2, sep="."), segfile1[common_reg, c(2:4)], segfile1[common_reg, c("Methylated", "Total", "FractionMethylated")], segfile2[common_reg, c("Methylated", "Total", "FractionMethylated")], results, DiffProp = round(segfile1[common_reg, "FractionMethylated"] - segfile2[common_reg, "FractionMethylated"], 6), stringsAsFactors=F) colnames(tab_out)[c(5:10)] <- c(paste(sample1, "Methylated", sep="."), paste(sample1, "Total", sep="."), paste(sample1, "Proportion", sep="."), paste(sample2, "Methylated", sep="."), paste(sample2, "Total", sep="."), paste(sample2, "Proportion", sep=".")) rm(segfile1) rm(segfile2) gc() add_annot <- function(tab, annotation, genome) { # find closest feature if(genome == "hg19" || genome == "GRCh37" || genome == "b37") { genome <- "hg19" dataset <- "hsapiens_gene_ensembl" biomart <- "ensembl" host <- "www.biomart.org" attributes <- c("ensembl_gene_id", "hgnc_symbol", "refseq_mrna", "start_position", "end_position") } else if(genome == "mm9" || genome == "NCBIM37") { genome <- "mm9" dataset <- "mmusculus_gene_ensembl" biomart <- "ENSEMBL_MART_ENSEMBL" host <- "may2012.archive.ensembl.org" attributes <- c("ensembl_gene_id", "mgi_symbol", "refseq_mrna", "start_position", "end_position") } else if(genome == "mm10" || genome == "GRCm38") { genome <- "mm10" dataset <- "mmusculus_gene_ensembl" biomart <- "ensembl" host <- "www.biomart.org" attributes <- c("ensembl_gene_id", "mgi_symbol", "refseq_mrna", "start_position", "end_position") } else if(genome == "dm3" || genome == "BDGP5") { genome <- "dm3" dataset <- "dmelanogaster_gene_ensembl" biomart <- "ensembl" host <- "www.biomart.org" attributes <- c("ensembl_gene_id", "flybasecgid_gene", "refseq_mrna", "start_position", "end_position") } e_to_U = c("GL000191.1" = "1_gl000191_random", "GL000192.1" = "1_gl000192_random", "GL000193.1" = "4_gl000193_random", "GL000194.1" = "4_gl000194_random", "GL000195.1" = "7_gl000195_random", "GL000196.1" = "8_gl000196_random", "GL000197.1" = "8_gl000197_random", "GL000198.1" = "9_gl000198_random", "GL000199.1" = "9_gl000199_random", "GL000200.1" = "9_gl000200_random", "GL000201.1" = "9_gl000201_random", "GL000202.1" = "11_gl000202_random", "GL000203.1" = "17_gl000203_random", "GL000204.1" = "17_gl000204_random", "GL000205.1" = "17_gl000205_random", "GL000206.1" = "17_gl000206_random", "GL000207.1" = "18_gl000207_random", "GL000208.1" = "19_gl000208_random", "GL000209.1" = "19_gl000209_random", "GL000210.1" = "21_gl000210_random", "GL000211.1" = "Un_gl000211", "GL000212.1" = "Un_gl000212", "GL000213.1" = "Un_gl000213", "GL000214.1" = "Un_gl000214", "GL000215.1" = "Un_gl000215", "GL000216.1" = "Un_gl000216", "GL000217.1" = "Un_gl000217", "GL000218.1" = "Un_gl000218", "GL000219.1" = "Un_gl000219", "GL000220.1" = "Un_gl000220", "GL000221.1" = "Un_gl000221", "GL000222.1" = "Un_gl000222", "GL000223.1" = "Un_gl000223", "GL000224.1" = "Un_gl000224", "GL000225.1" = "Un_gl000225", "GL000226.1" = "Un_gl000226", "GL000227.1" = "Un_gl000227", "GL000228.1" = "Un_gl000228", "GL000229.1" = "Un_gl000229", "GL000230.1" = "Un_gl000230", "GL000231.1" = "Un_gl000231", "GL000232.1" = "Un_gl000232", "GL000233.1" = "Un_gl000233", "GL000234.1" = "Un_gl000234", "GL000235.1" = "Un_gl000235", "GL000236.1" = "Un_gl000236", "GL000237.1" = "Un_gl000237", "GL000238.1" = "Un_gl000238", "GL000239.1" = "Un_gl000239", "GL000240.1" = "Un_gl000240", "GL000241.1" = "Un_gl000241", "GL000242.1" = "Un_gl000242", "GL000243.1" = "Un_gl000243", "GL000244.1" = "Un_gl000244", "GL000245.1" = "Un_gl000245", "GL000246.1" = "Un_gl000246", "GL000247.1" = "Un_gl000247", "GL000248.1" = "Un_gl000248", "GL000249.1" = "Un_gl000249") # function to conver ucsc chroms to ensembl ensembl <- function(chr, genome) { # ensembl does not us chr and M is MT chr <- sub("^chr", "", chr) if(genome == "dm3" || genome == "BDGP5") { chr <- sub("^M$", "dmel_mitochondrion_genome", chr) } else { chr <- sub("^M$", "MT", chr) } chr[which(chr %in% e_to_U)] <- names(e_to_U)[match(chr[which(chr %in% e_to_U)], e_to_U)] return(chr) } # function to conver ensembl chroms to ucsc ucsc <- function(chr) { chr <- sub("^chr", "", chr) tmp <- which(chr %in% names(c(e_to_U, dmel_mitochondrion_genome = "M", MT = "M"))) chr[tmp] <- c(e_to_U, dmel_mitochondrion_genome = "M", MT = "M")[chr[tmp]] paste("chr", chr, sep="") } # function to get the gene annotation by chromosome get_genes <- function(chr) { library(biomaRt) mart <- useMart(biomart=biomart, dataset=dataset, host=host) tab <- getBM(attributes = attributes, filters = "chromosome_name", values = chr, mart = mart) if(any(is.na(tab))) for(i in 1:ncol(tab)) tab[is.na(tab[,i]), i] <- "" mult_ids <- names(which(table(tab$ensembl_gene_id) > 1)) rem <- NULL for(i in mult_ids) { index <- which(tab$ensembl_gene_id == i) refseq <- which(tab$ensembl_gene_id == i & tab$refseq_mrna != "") if(length(refseq) > 0) { rem <- c(rem, setdiff(index, refseq[1])) } else { rem <- c(rem, index[-1]) } } if(length(rem) > 0) tab <- tab[-rem,] colnames(tab)[4:5] <- c("feature_start", "feature_end") return(tab) } get_cpg <- function(chr) { library(rtracklayer) options(stringsAsFactors=F) session <- browserSession() genome(session) <- genome query <- ucscTableQuery(session, "CpG Islands", GRangesForUCSCGenome(genome, chr)) cpg <- getTable(query) cpg <- cpg[, c("name", "perCpg", "perGc", "chromStart", "chromEnd")] colnames(cpg) <- c("cpg", "cpg_perCpg", "cpg_perGc", "cpg_start", "cpg_end") return(cpg) } chr <- tab[1, 2] # get the gene info for this chrom if(annotation == "gene") { tab <- cbind(tab, ensembl_gene_id = "", id = "", refseq_mrna = "", feature_start = "", feature_end = "", Distance_To_Feature = "", stringsAsFactors=F) annotData <- get_genes(ensembl(chr, genome)) colnames(tab)[16] <- attributes[2] } else { tab <- cbind(tab, cpg = "", cpg_perCpg = "", cpg_perGc = "", cpg_start = "", cpg_end = "", Distance_To_cpg = "", stringsAsFactors=F) annotData <- get_cpg(ucsc(chr)) } if(nrow(annotData) == 0) return(tab) starts <- t(matrix(cbind(-1, as.numeric(annotData[, 4])), ncol=2, byrow=F)) ends <- t(matrix(cbind(-1, as.numeric(annotData[, 5])), ncol=2, byrow=F)) # calculate the distances from the features to the regions dist_start_start <- matrix(cbind(tab$loc.start, 1), ncol=2, byrow=F) %*% starts dist_start_end <- matrix(cbind(tab$loc.start, 1), ncol=2, byrow=F) %*% ends dist_end_start <- matrix(cbind(tab$loc.end, 1), ncol=2, byrow=F) %*% starts dist_end_end <- matrix(cbind(tab$loc.end, 1), ncol=2, byrow=F) %*% ends # determine which regions overlap at least 1 feature sum_signs <- abs(sign(dist_start_start) + sign(dist_start_end) + sign(dist_end_start) + sign(dist_end_end)) regions <- which(sum_signs != 4, arr.ind=TRUE) if(length(regions) > 0) { overlap <- sort(unique(regions[,1])) non_overlap <- c(1:nrow(tab))[-overlap] } else { overlap <- NULL non_overlap <- c(1:nrow(tab)) } # reduce to regions with no overlaping feqature if(length(overlap) > 0) { dist_start_start <- matrix(dist_start_start[non_overlap,], ncol=ncol(dist_start_start)) dist_start_end <- matrix(dist_start_end[non_overlap,], ncol=ncol(dist_start_end)) dist_end_start <- matrix(dist_end_start[non_overlap,], ncol=ncol(dist_end_start)) dist_end_end <- matrix(dist_end_end[non_overlap,], ncol=ncol(dist_end_end)) } rm(sum_signs) gc() # extract the annot for the regions with overlaping features if(length(overlap) > 0) { annot <- sapply(overlap, function(x, y) { x <- regions[which(regions[,1] == x), 2] sub("^//$", "", c(paste(annotData[x,1], collapse="//"), paste(annotData[x,2], collapse="//"), paste(annotData[x,3], collapse="//"), paste(annotData[x,4], collapse="//"), paste(annotData[x,5], collapse="//"))) }, regions) annot <- as.data.frame(t(annot), stringsAsFactors=F) annot <- cbind(annot, "Overlap", stringsAsFactors=F) colnames(annot) <- c(colnames(annotData), tail(colnames(tab),1)) } rm(regions) gc() # for non the non-overlaps the distance of the closest features to each region if(length(non_overlap) > 0) { clst_pts <- matrix(0, ncol=4, nrow=length(non_overlap)) clst_pts[,1] <- max.col(-abs(dist_start_start), "last") clst_pts[,2] <- max.col(-abs(dist_start_end), "last") clst_pts[,3] <- max.col(-abs(dist_end_start), "last") clst_pts[,4] <- max.col(-abs(dist_end_end), "last") dist <- matrix(0, ncol=4, nrow=length(non_overlap)) if(length(clst_pts[,1]) == 1) { dist[,1] <- dist_start_start[1, clst_pts[,1]] dist[,2] <- dist_start_end[1, clst_pts[,2]] dist[,3] <- dist_end_start[1, clst_pts[,3]] dist[,4] <- dist_end_end[1, clst_pts[,4]] # extract the annot for the regions with non-overlaping features clst_all <- max.col(-abs(dist)) dist_to_feat <- dist[1, clst_all] clst <- clst_pts[1, clst_all] } else { dist[,1] <- dist_start_start[cbind(seq(clst_pts[,1]), clst_pts[,1])] dist[,2] <- dist_start_end[cbind(seq(clst_pts[,2]), clst_pts[,2])] dist[,3] <- dist_end_start[cbind(seq(clst_pts[,3]), clst_pts[,3])] dist[,4] <- dist_end_end[cbind(seq(clst_pts[,4]), clst_pts[,4])] # extract the annot for the regions with non-overlaping features clst_all <- max.col(-abs(dist)) dist_to_feat <- dist[cbind(seq(clst_all), clst_all)] clst <- clst_pts[cbind(seq(clst_all), clst_all)] } annot_non_overlap <- cbind(annotData[clst, ], dist_to_feat) colnames(annot_non_overlap) <- c(colnames(annotData), tail(colnames(tab),1)) } rm(dist_start_start) rm(dist_start_end) rm(dist_end_start) rm(dist_end_end) gc() if(length(overlap) > 0) tab[overlap, colnames(annot)] <- annot if(length(non_overlap) > 0) tab[non_overlap, colnames(annot_non_overlap)] <- annot_non_overlap return(tab) } tab_list <- list() for(i in unique(tab_out[,2])) tab_list[[i]] <- tab_out[which(tab_out$chrom == i),] rm(tab_out) gc() if(opt$annot == "both" || opt$annot == "gene") { annotation <- "gene" tab_list <- clusterApplyLB(cl, tab_list, add_annot, annotation, opt$reference) } if(opt$annot == "both" || opt$annot == "cpg") { annotation <- "cpg" tab_list <- clusterApplyLB(cl, tab_list, add_annot, annotation, opt$reference) } tab_out <- NULL for(i in 1:length(tab_list)) tab_out <- rbind(tab_out, tab_list[[i]]) cat("'", file=opt$output) write.table(tab_out[,c(1:13, 15:26, 14)], opt$output, row.names=F, col.names=T, quote=F, sep="\t", append=T) stopCluster(cl) q(status=0)