0
|
1 <?xml version="1.0" ?>
|
9
|
2 <tool id="qiime_vsearch_cluster-features-de-novo" name="qiime vsearch cluster-features-de-novo" version="2019.7">
|
0
|
3 <description> - De novo clustering of features.</description>
|
|
4 <requirements>
|
9
|
5 <requirement type="package" version="2019.7">qiime2</requirement>
|
0
|
6 </requirements>
|
|
7 <command><![CDATA[
|
|
8 qiime vsearch cluster-features-de-novo
|
|
9
|
|
10 --i-sequences=$isequences
|
|
11 --i-table=$itable
|
|
12 --p-perc-identity="$ppercidentity"
|
|
13
|
|
14 #set $pthreads = '${GALAXY_SLOTS:-4}'
|
|
15 #if str($pthreads):
|
|
16 --p-threads="$pthreads"
|
|
17 #end if
|
|
18
|
|
19 --o-clustered-table=oclusteredtable
|
|
20 --o-clustered-sequences=oclusteredsequences
|
|
21 ;
|
|
22 cp oclusteredtable.qza $oclusteredtable;
|
|
23 cp oclusteredsequences.qza $oclusteredsequences
|
|
24 ]]></command>
|
|
25 <inputs>
|
|
26 <param format="qza,no_unzip.zip" label="--i-sequences: ARTIFACT FeatureData[Sequence] The sequences corresponding to the features in table. [required]" name="isequences" optional="False" type="data"/>
|
|
27 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] The feature table to be clustered. [required]" name="itable" optional="False" type="data"/>
|
|
28
|
|
29 <param label="--p-perc-identity: PROPORTION Range(0, 1, inclusive_start=False, inclusive_end=True) The percent identity at which clustering should be performed. This parameter maps to vsearch's --id parameter. [required]" name="ppercidentity" optional="False" min="0" max="1" value="" exclude_min="True" exclude_max="False" type="float"/>
|
|
30 </inputs>
|
|
31 <outputs>
|
|
32 <data format="qza" label="${tool.name} on ${on_string}: clusteredtable.qza" name="oclusteredtable"/>
|
|
33 <data format="qza" label="${tool.name} on ${on_string}: clusteredsequences.qza" name="oclusteredsequences"/>
|
|
34 </outputs>
|
|
35 <help><![CDATA[
|
|
36 De novo clustering of features.
|
|
37 ###############################
|
|
38
|
|
39 Given a feature table and the associated feature sequences, cluster the
|
|
40 features based on user-specified percent identity threshold of their
|
|
41 sequences. This is not a general-purpose de novo clustering method, but
|
|
42 rather is intended to be used for clustering the results of quality-
|
|
43 filtering/dereplication methods, such as DADA2, or for re-clustering a
|
|
44 FeatureTable at a lower percent identity than it was originally clustered
|
|
45 at. When a group of features in the input table are clustered into a single
|
|
46 feature, the frequency of that single feature in a given sample is the sum
|
|
47 of the frequencies of the features that were clustered in that sample.
|
|
48 Feature identifiers and sequences will be inherited from the centroid
|
|
49 feature of each cluster. See the vsearch documentation for details on how
|
|
50 sequence clustering is performed.
|
|
51
|
|
52 Parameters
|
|
53 ----------
|
|
54 sequences : FeatureData[Sequence]
|
|
55 The sequences corresponding to the features in table.
|
|
56 table : FeatureTable[Frequency]
|
|
57 The feature table to be clustered.
|
|
58 perc_identity : Float % Range(0, 1, inclusive_start=False, inclusive_end=True)
|
|
59 The percent identity at which clustering should be performed. This
|
|
60 parameter maps to vsearch's --id parameter.
|
|
61 Returns
|
|
62 -------
|
|
63 clustered_table : FeatureTable[Frequency]
|
|
64 The table following clustering of features.
|
|
65 clustered_sequences : FeatureData[Sequence]
|
|
66 Sequences representing clustered features.
|
|
67 ]]></help>
|
|
68 <macros>
|
|
69 <import>qiime_citation.xml</import>
|
|
70 </macros>
|
|
71 <expand macro="qiime_citation"/>
|
|
72 </tool>
|