comparison qiime2/qiime_diversity_pcoa.xml @ 0:370e0b6e9826 draft

Uploaded
author florianbegusch
date Wed, 17 Jul 2019 03:05:17 -0400
parents
children f190567fe3f6
comparison
equal deleted inserted replaced
-1:000000000000 0:370e0b6e9826
1 <?xml version="1.0" ?>
2 <tool id="qiime_diversity_pcoa" name="qiime diversity pcoa" version="2019.4">
3 <description> - Principal Coordinate Analysis</description>
4 <requirements>
5 <requirement type="package" version="2019.4">qiime2</requirement>
6 </requirements>
7 <command><![CDATA[
8 qiime diversity pcoa
9
10 --i-distance-matrix=$idistancematrix
11
12 #if str($pnumberofdimensions):
13 --p-number-of-dimensions="$pnumberofdimensions"
14 #end if
15
16 --o-pcoa=opcoa
17 ;
18 cp opcoa.qza $opcoa
19 ]]></command>
20 <inputs>
21 <param format="qza,no_unzip.zip" label="--i-distance-matrix: ARTIFACT DistanceMatrix The distance matrix on which PCoA should be computed. [required]" name="idistancematrix" optional="False" type="data"/>
22 <param label="--p-number-of-dimensions: INTEGER Range(1, None) Dimensions to reduce the distance matrix to. This number determines how many eigenvectors and eigenvalues are returned,and influences the choice of algorithm used to compute them. By default, uses the default eigendecomposition method, SciPy's eigh, which computes all eigenvectors and eigenvalues in an exact manner. For very large matrices, this is expected to be slow. If a value is specified for this parameter, then the fast, heuristic eigendecomposition algorithm fsvd is used, which only computes and returns the number of dimensions specified, but suffers some degree of accuracy loss, the magnitude of which varies across different datasets. [optional]" name="pnumberofdimensions" optional="True" min="1" type="integer"/>
23 </inputs>
24 <outputs>
25 <data format="qza" label="${tool.name} on ${on_string}: pcoa.qza" name="opcoa"/>
26 </outputs>
27 <help><![CDATA[
28 Principal Coordinate Analysis
29 #############################
30
31 Apply principal coordinate analysis.
32
33 Parameters
34 ----------
35 distance_matrix : DistanceMatrix
36 The distance matrix on which PCoA should be computed.
37 number_of_dimensions : Int % Range(1, None), optional
38 Dimensions to reduce the distance matrix to. This number determines how
39 many eigenvectors and eigenvalues are returned,and influences the
40 choice of algorithm used to compute them. By default, uses the default
41 eigendecomposition method, SciPy's eigh, which computes all
42 eigenvectors and eigenvalues in an exact manner. For very large
43 matrices, this is expected to be slow. If a value is specified for this
44 parameter, then the fast, heuristic eigendecomposition algorithm fsvd
45 is used, which only computes and returns the number of dimensions
46 specified, but suffers some degree of accuracy loss, the magnitude of
47 which varies across different datasets.
48
49 Returns
50 -------
51 pcoa : PCoAResults
52 The resulting PCoA matrix.
53 ]]></help>
54 <macros>
55 <import>qiime_citation.xml</import>
56 </macros>
57 <expand macro="qiime_citation"/>
58 </tool>