Mercurial > repos > florianbegusch > qiime2_suite
comparison qiime2/qiime_sample-classifier_classify-samples-ncv.xml @ 0:370e0b6e9826 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 17 Jul 2019 03:05:17 -0400 |
parents | |
children | 51025741f326 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:370e0b6e9826 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_sample-classifier_classify-samples-ncv" name="qiime sample-classifier classify-samples-ncv" version="2019.4"> | |
3 <description> - Nested cross-validated supervised learning classifier.</description> | |
4 <requirements> | |
5 <requirement type="package" version="2019.4">qiime2</requirement> | |
6 </requirements> | |
7 <command><![CDATA[ | |
8 qiime sample-classifier classify-samples-ncv | |
9 | |
10 --i-table=$itable | |
11 --m-metadata-column="$mmetadatacolumn" | |
12 | |
13 #if $input_files_mmetadatafile: | |
14 #def list_dict_to_string(list_dict): | |
15 #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
16 #for d in list_dict[1:]: | |
17 #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
18 #end for | |
19 #return $file_list | |
20 #end def | |
21 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
22 #end if | |
23 | |
24 #if $pcv: | |
25 --p-cv=$pcv | |
26 #end if | |
27 | |
28 #if str($prandomstate): | |
29 --p-random-state="$prandomstate" | |
30 #end if | |
31 | |
32 #set $pnjobs = '${GALAXY_SLOTS:-4}' | |
33 | |
34 #if str($pnjobs): | |
35 --p-n-jobs="$pnjobs" | |
36 #end if | |
37 | |
38 | |
39 #if $pnestimators: | |
40 --p-n-estimators=$pnestimators | |
41 #end if | |
42 | |
43 #if str($pestimator) != 'None': | |
44 --p-estimator=$pestimator | |
45 #end if | |
46 | |
47 #if $pparametertuning: | |
48 --p-parameter-tuning | |
49 #end if | |
50 | |
51 #if str($pmissingsamples) != 'None': | |
52 --p-missing-samples=$pmissingsamples | |
53 #end if | |
54 | |
55 --o-predictions=opredictions | |
56 --o-feature-importance=ofeatureimportance | |
57 ; | |
58 cp opredictions.qza $opredictions; | |
59 cp ofeatureimportance.qza $ofeatureimportance | |
60 ]]></command> | |
61 <inputs> | |
62 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> | |
63 <param label="--m-metadata-column: COLUMN MetadataColumn[Categorical] Categorical metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/> | |
64 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" name="pcv" optional="True" type="integer" value="5" min="1"/> | |
65 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="integer"/> | |
66 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" value="100" min="1"/> | |
67 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
68 <option selected="True" value="None">Selection is Optional</option> | |
69 <option value="RandomForestClassifier">RandomForestClassifier</option> | |
70 <option value="ExtraTreesClassifier">ExtraTreesClassifier</option> | |
71 <option value="GradientBoostingClassifier">GradientBoostingClassifier</option> | |
72 <option value="AdaBoostClassifier">AdaBoostClassifier</option> | |
73 <option value="KNeighborsClassifier">KNeighborsClassifier</option> | |
74 <option value="LinearSVC">LinearSVC</option> | |
75 <option value="SVC">SVC</option> | |
76 </param> | |
77 <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean"/> | |
78 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
79 <option selected="True" value="None">Selection is Optional</option> | |
80 <option value="error">error</option> | |
81 <option value="ignore">ignore</option> | |
82 </param> | |
83 | |
84 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> | |
85 <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> | |
86 </repeat> | |
87 </inputs> | |
88 <outputs> | |
89 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions"/> | |
90 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance"/> | |
91 </outputs> | |
92 <help><![CDATA[ | |
93 Nested cross-validated supervised learning classifier. | |
94 ###################################################### | |
95 | |
96 Predicts a categorical sample metadata column using a supervised learning | |
97 classifier. Uses nested stratified k-fold cross validation for automated | |
98 hyperparameter optimization and sample prediction. Outputs predicted values | |
99 for each input sample, and relative importance of each feature for model | |
100 accuracy. | |
101 | |
102 Parameters | |
103 ---------- | |
104 table : FeatureTable[Frequency] | |
105 Feature table containing all features that should be used for target | |
106 prediction. | |
107 metadata : MetadataColumn[Categorical] | |
108 Categorical metadata column to use as prediction target. | |
109 cv : Int % Range(1, None), optional | |
110 Number of k-fold cross-validations to perform. | |
111 random_state : Int, optional | |
112 Seed used by random number generator. | |
113 n_estimators : Int % Range(1, None), optional | |
114 Number of trees to grow for estimation. More trees will improve | |
115 predictive accuracy up to a threshold level, but will also increase | |
116 time and memory requirements. This parameter only affects ensemble | |
117 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
118 GradientBoosting. | |
119 estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional | |
120 Estimator method to use for sample prediction. | |
121 parameter_tuning : Bool, optional | |
122 Automatically tune hyperparameters using random grid search. | |
123 missing_samples : Str % Choices('error', 'ignore'), optional | |
124 How to handle missing samples in metadata. "error" will fail if missing | |
125 samples are detected. "ignore" will cause the feature table and | |
126 metadata to be filtered, so that only samples found in both files are | |
127 retained. | |
128 | |
129 Returns | |
130 ------- | |
131 predictions : SampleData[ClassifierPredictions] | |
132 Predicted target values for each input sample. | |
133 feature_importance : FeatureData[Importance] | |
134 Importance of each input feature to model accuracy. | |
135 ]]></help> | |
136 <macros> | |
137 <import>qiime_citation.xml</import> | |
138 </macros> | |
139 <expand macro="qiime_citation"/> | |
140 </tool> |