Mercurial > repos > florianbegusch > qiime2_suite
comparison qiime2/qiime_sample-classifier_fit-classifier.xml @ 0:370e0b6e9826 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 17 Jul 2019 03:05:17 -0400 |
parents | |
children | a025a4a89e07 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:370e0b6e9826 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_sample-classifier_fit-classifier" name="qiime sample-classifier fit-classifier" version="2019.4"> | |
3 <description> - Fit a supervised learning classifier.</description> | |
4 <requirements> | |
5 <requirement type="package" version="2019.4">qiime2</requirement> | |
6 </requirements> | |
7 <command><![CDATA[ | |
8 qiime sample-classifier fit-classifier | |
9 | |
10 --i-table=$itable | |
11 --m-metadata-column="$mmetadatacolumn" | |
12 | |
13 #if $pstep: | |
14 --p-step=$pstep | |
15 #end if | |
16 | |
17 #if $pcv: | |
18 --p-cv=$pcv | |
19 #end if | |
20 | |
21 #if str($prandomstate): | |
22 --p-random-state="$prandomstate" | |
23 #end if | |
24 | |
25 #set $pnjobs = '${GALAXY_SLOTS:-4}' | |
26 | |
27 #if str($pnjobs): | |
28 --p-n-jobs="$pnjobs" | |
29 #end if | |
30 | |
31 | |
32 #if $pnestimators: | |
33 --p-n-estimators=$pnestimators | |
34 #end if | |
35 | |
36 #if str($pestimator) != 'None': | |
37 --p-estimator=$pestimator | |
38 #end if | |
39 | |
40 #if $poptimizefeatureselection: | |
41 --p-optimize-feature-selection | |
42 #end if | |
43 | |
44 #if $pparametertuning: | |
45 --p-parameter-tuning | |
46 #end if | |
47 | |
48 #if str($pmissingsamples) != 'None': | |
49 --p-missing-samples=$pmissingsamples | |
50 #end if | |
51 | |
52 | |
53 #if $input_files_mmetadatafile: | |
54 #def list_dict_to_string(list_dict): | |
55 #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
56 #for d in list_dict[1:]: | |
57 #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
58 #end for | |
59 #return $file_list | |
60 #end def | |
61 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
62 #end if | |
63 | |
64 | |
65 --o-sample-estimator=osampleestimator | |
66 --o-feature-importance=ofeatureimportance | |
67 ; | |
68 cp osampleestimator.qza $osampleestimator; | |
69 cp ofeatureimportance.qza $ofeatureimportance | |
70 ]]></command> | |
71 <inputs> | |
72 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> | |
73 <param label="--m-metadata-column: COLUMN MetadataColumn[Categorical] Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/> | |
74 <param label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" value="0.05" min="0" max="1" exclusive_start="True"/> | |
75 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" name="pcv" optional="True" type="integer" value="5" min="1"/> | |
76 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="integer"/> | |
77 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" value="100" min="1"/> | |
78 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
79 <option selected="True" value="None">Selection is Optional</option> | |
80 <option value="RandomForestClassifier">RandomForestClassifier</option> | |
81 <option value="ExtraTreesClassifier">ExtraTreesClassifier</option> | |
82 <option value="GradientBoostingClassifier">GradientBoostingClassifier</option> | |
83 <option value="AdaBoostClassifier">AdaBoostClassifier</option> | |
84 <option value="KNeighborsClassifier">KNeighborsClassifier</option> | |
85 <option value="LinearSVC">LinearSVC</option> | |
86 <option value="SVC">SVC</option> | |
87 </param> | |
88 <param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean"/> | |
89 <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean"/> | |
90 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
91 <option selected="True" value="None">Selection is Optional</option> | |
92 <option value="error">error</option> | |
93 <option value="ignore">ignore</option> | |
94 </param> | |
95 | |
96 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> | |
97 <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> | |
98 </repeat> | |
99 | |
100 </inputs> | |
101 <outputs> | |
102 <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator"/> | |
103 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance"/> | |
104 </outputs> | |
105 <help><![CDATA[ | |
106 Fit a supervised learning classifier. | |
107 ##################################### | |
108 | |
109 Fit a supervised learning classifier. Outputs the fit estimator (for | |
110 prediction of test samples and/or unknown samples) and the relative | |
111 importance of each feature for model accuracy. Optionally use k-fold cross- | |
112 validation for automatic recursive feature elimination and hyperparameter | |
113 tuning. | |
114 | |
115 Parameters | |
116 ---------- | |
117 table : FeatureTable[Frequency] | |
118 Feature table containing all features that should be used for target | |
119 prediction. | |
120 metadata : MetadataColumn[Categorical] | |
121 Numeric metadata column to use as prediction target. | |
122 step : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
123 If optimize_feature_selection is True, step is the percentage of | |
124 features to remove at each iteration. | |
125 cv : Int % Range(1, None), optional | |
126 Number of k-fold cross-validations to perform. | |
127 random_state : Int, optional | |
128 Seed used by random number generator. | |
129 n_estimators : Int % Range(1, None), optional | |
130 Number of trees to grow for estimation. More trees will improve | |
131 predictive accuracy up to a threshold level, but will also increase | |
132 time and memory requirements. This parameter only affects ensemble | |
133 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
134 GradientBoosting. | |
135 estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional | |
136 Estimator method to use for sample prediction. | |
137 optimize_feature_selection : Bool, optional | |
138 Automatically optimize input feature selection using recursive feature | |
139 elimination. | |
140 parameter_tuning : Bool, optional | |
141 Automatically tune hyperparameters using random grid search. | |
142 missing_samples : Str % Choices('error', 'ignore'), optional | |
143 How to handle missing samples in metadata. "error" will fail if missing | |
144 samples are detected. "ignore" will cause the feature table and | |
145 metadata to be filtered, so that only samples found in both files are | |
146 retained. | |
147 | |
148 Returns | |
149 ------- | |
150 sample_estimator : SampleEstimator[Classifier] | |
151 Trained sample classifier. | |
152 feature_importance : FeatureData[Importance] | |
153 Importance of each input feature to model accuracy. | |
154 ]]></help> | |
155 <macros> | |
156 <import>qiime_citation.xml</import> | |
157 </macros> | |
158 <expand macro="qiime_citation"/> | |
159 </tool> |