Mercurial > repos > florianbegusch > qiime2_suite
comparison qiime2/qiime_sample-classifier_predict-regression.xml @ 0:370e0b6e9826 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 17 Jul 2019 03:05:17 -0400 |
parents | |
children | f190567fe3f6 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:370e0b6e9826 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_sample-classifier_predict-regression" name="qiime sample-classifier predict-regression" version="2019.4"> | |
3 <description> - Use trained regressor to predict target values for new samples.</description> | |
4 <requirements> | |
5 <requirement type="package" version="2019.4">qiime2</requirement> | |
6 </requirements> | |
7 <command><![CDATA[ | |
8 qiime sample-classifier predict-regression | |
9 | |
10 --i-table=$itable | |
11 --i-sample-estimator=$isampleestimator | |
12 | |
13 #set $pnjobs = '${GALAXY_SLOTS:-4}' | |
14 | |
15 #if str($pnjobs): | |
16 --p-n-jobs="$pnjobs" | |
17 #end if | |
18 | |
19 --o-predictions=opredictions | |
20 ; | |
21 cp opredictions.qza $opredictions | |
22 ]]></command> | |
23 <inputs> | |
24 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> | |
25 <param format="qza,no_unzip.zip" label="--i-sample-estimator: ARTIFACT SampleEstimator[Regressor] Sample regressor trained with fit_regressor. [required]" name="isampleestimator" optional="False" type="data"/> | |
26 </inputs> | |
27 <outputs> | |
28 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions"/> | |
29 </outputs> | |
30 <help><![CDATA[ | |
31 Use trained regressor to predict target values for new samples. | |
32 ############################################################### | |
33 | |
34 Use trained estimator to predict target values for new samples. These will | |
35 typically be unseen samples, e.g., test data (derived manually or from | |
36 split_table) or samples with unknown values, but can theoretically be any | |
37 samples present in a feature table that contain overlapping features with | |
38 the feature table used to train the estimator. | |
39 | |
40 Parameters | |
41 ---------- | |
42 table : FeatureTable[Frequency] | |
43 Feature table containing all features that should be used for target | |
44 prediction. | |
45 sample_estimator : SampleEstimator[Regressor] | |
46 Sample regressor trained with fit_regressor. | |
47 | |
48 Returns | |
49 ------- | |
50 predictions : SampleData[RegressorPredictions] | |
51 Predicted target values for each input sample. | |
52 ]]></help> | |
53 <macros> | |
54 <import>qiime_citation.xml</import> | |
55 </macros> | |
56 <expand macro="qiime_citation"/> | |
57 </tool> |