Mercurial > repos > florianbegusch > qiime2_suite
comparison qiime2/qiime_sample-classifier_regress-samples.xml @ 29:3ba9833030c1 draft
Uploaded
author | florianbegusch |
---|---|
date | Fri, 04 Sep 2020 13:12:49 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
28:c28331a63dfd | 29:3ba9833030c1 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_sample-classifier_regress-samples" name="qiime sample-classifier regress-samples" | |
3 version="2020.8"> | |
4 <description>Train and test a cross-validated supervised learning regressor.</description> | |
5 <requirements> | |
6 <requirement type="package" version="2020.8">qiime2</requirement> | |
7 </requirements> | |
8 <command><![CDATA[ | |
9 qiime sample-classifier regress-samples | |
10 | |
11 --i-table=$itable | |
12 # if $input_files_mmetadatafile: | |
13 # def list_dict_to_string(list_dict): | |
14 # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
15 # for d in list_dict[1:]: | |
16 # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
17 # end for | |
18 # return $file_list | |
19 # end def | |
20 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
21 # end if | |
22 | |
23 #if '__ob__' in str($mmetadatacolumn): | |
24 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__ob__', '[') | |
25 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
26 #end if | |
27 #if '__cb__' in str($mmetadatacolumn): | |
28 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__cb__', ']') | |
29 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
30 #end if | |
31 #if 'X' in str($mmetadatacolumn): | |
32 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('X', '\\') | |
33 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
34 #end if | |
35 #if '__sq__' in str($mmetadatacolumn): | |
36 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__sq__', "'") | |
37 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
38 #end if | |
39 #if '__db__' in str($mmetadatacolumn): | |
40 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__db__', '"') | |
41 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
42 #end if | |
43 | |
44 --m-metadata-column=$mmetadatacolumn | |
45 | |
46 | |
47 --p-test-size=$ptestsize | |
48 | |
49 --p-step=$pstep | |
50 | |
51 --p-cv=$pcv | |
52 | |
53 #if str($prandomstate): | |
54 --p-random-state=$prandomstate | |
55 #end if | |
56 --p-n-jobs=$pnjobs | |
57 | |
58 --p-n-estimators=$pnestimators | |
59 | |
60 #if str($pestimator) != 'None': | |
61 --p-estimator=$pestimator | |
62 #end if | |
63 | |
64 #if $poptimizefeatureselection: | |
65 --p-optimize-feature-selection | |
66 #end if | |
67 | |
68 #if $pstratify: | |
69 --p-stratify | |
70 #end if | |
71 | |
72 #if $pparametertuning: | |
73 --p-parameter-tuning | |
74 #end if | |
75 | |
76 #if str($pmissingsamples) != 'None': | |
77 --p-missing-samples=$pmissingsamples | |
78 #end if | |
79 | |
80 --o-sample-estimator=osampleestimator | |
81 | |
82 --o-feature-importance=ofeatureimportance | |
83 | |
84 --o-predictions=opredictions | |
85 | |
86 --o-model-summary=omodelsummary | |
87 | |
88 --o-accuracy-results=oaccuracyresults | |
89 | |
90 #if str($examples) != 'None': | |
91 --examples=$examples | |
92 #end if | |
93 | |
94 ; | |
95 cp opredictions.qza $opredictions | |
96 | |
97 ; | |
98 qiime tools export omodelsummary.qzv --output-path out | |
99 && mkdir -p '$omodelsummary.files_path' | |
100 && cp -r out/* '$omodelsummary.files_path' | |
101 && mv '$omodelsummary.files_path/index.html' '$omodelsummary' | |
102 | |
103 ; | |
104 qiime tools export oaccuracyresults.qzv --output-path out | |
105 && mkdir -p '$oaccuracyresults.files_path' | |
106 && cp -r out/* '$oaccuracyresults.files_path' | |
107 && mv '$oaccuracyresults.files_path/index.html' '$oaccuracyresults' | |
108 | |
109 ]]></command> | |
110 <inputs> | |
111 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> | |
112 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> | |
113 <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA" name="additional_input" optional="True" type="data" /> | |
114 </repeat> | |
115 <param label="--m-metadata-column: COLUMN MetadataColumn[Numeric] Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text" /> | |
116 <param exclude_min="True" label="--p-test-size: PROPORTION Range(0.0, 1.0, inclusive_start=False) Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.2]" max="1.0" min="0.0" name="ptestsize" optional="True" type="float" value="0.2" /> | |
117 <param exclude_min="True" label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" max="1.0" min="0.0" name="pstep" optional="True" type="float" value="0.05" /> | |
118 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> | |
119 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> | |
120 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> | |
121 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
122 <option selected="True" value="None">Selection is Optional</option> | |
123 <option value="RandomForestRegressor">RandomForestRegressor</option> | |
124 <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> | |
125 <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> | |
126 <option value="AdaBoostRegressor">AdaBoostRegressor</option> | |
127 <option value="ElasticNet">ElasticNet</option> | |
128 <option value="Ridge">Ridge</option> | |
129 <option value="Lasso">Lasso</option> | |
130 <option value="KNeighborsRegressor">KNeighborsRegressor</option> | |
131 <option value="LinearSVR">LinearSVR</option> | |
132 <option value="SVR">SVR</option> | |
133 </param> | |
134 <param label="--p-optimize-feature-selection: --p-optimize-feature-selection: / --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean" /> | |
135 <param label="--p-stratify: --p-stratify: / --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" selected="False" type="boolean" /> | |
136 <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> | |
137 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
138 <option selected="True" value="None">Selection is Optional</option> | |
139 <option value="error">error</option> | |
140 <option value="ignore">ignore</option> | |
141 </param> | |
142 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> | |
143 | |
144 </inputs> | |
145 | |
146 <outputs> | |
147 <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator" /> | |
148 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> | |
149 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions" /> | |
150 <data format="html" label="${tool.name} on ${on_string}: modelsummary.html" name="omodelsummary" /> | |
151 <data format="html" label="${tool.name} on ${on_string}: accuracyresults.html" name="oaccuracyresults" /> | |
152 | |
153 </outputs> | |
154 | |
155 <help><![CDATA[ | |
156 Train and test a cross-validated supervised learning regressor. | |
157 ############################################################### | |
158 | |
159 Predicts a continuous sample metadata column using a supervised learning | |
160 regressor. Splits input data into training and test sets. The training set | |
161 is used to train and test the estimator using a stratified k-fold cross- | |
162 validation scheme. This includes optional steps for automated feature | |
163 extraction and hyperparameter optimization. The test set validates | |
164 classification accuracy of the optimized estimator. Outputs classification | |
165 results for test set. For more details on the learning algorithm, see | |
166 http://scikit-learn.org/stable/supervised_learning.html | |
167 | |
168 Parameters | |
169 ---------- | |
170 table : FeatureTable[Frequency] | |
171 Feature table containing all features that should be used for target | |
172 prediction. | |
173 metadata : MetadataColumn[Numeric] | |
174 Numeric metadata column to use as prediction target. | |
175 test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
176 Fraction of input samples to exclude from training set and use for | |
177 classifier testing. | |
178 step : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
179 If optimize_feature_selection is True, step is the percentage of | |
180 features to remove at each iteration. | |
181 cv : Int % Range(1, None), optional | |
182 Number of k-fold cross-validations to perform. | |
183 random_state : Int, optional | |
184 Seed used by random number generator. | |
185 n_jobs : Int, optional | |
186 Number of jobs to run in parallel. | |
187 n_estimators : Int % Range(1, None), optional | |
188 Number of trees to grow for estimation. More trees will improve | |
189 predictive accuracy up to a threshold level, but will also increase | |
190 time and memory requirements. This parameter only affects ensemble | |
191 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
192 GradientBoosting. | |
193 estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional | |
194 Estimator method to use for sample prediction. | |
195 optimize_feature_selection : Bool, optional | |
196 Automatically optimize input feature selection using recursive feature | |
197 elimination. | |
198 stratify : Bool, optional | |
199 Evenly stratify training and test data among metadata categories. If | |
200 True, all values in column must match at least two samples. | |
201 parameter_tuning : Bool, optional | |
202 Automatically tune hyperparameters using random grid search. | |
203 missing_samples : Str % Choices('error', 'ignore'), optional | |
204 How to handle missing samples in metadata. "error" will fail if missing | |
205 samples are detected. "ignore" will cause the feature table and | |
206 metadata to be filtered, so that only samples found in both files are | |
207 retained. | |
208 | |
209 Returns | |
210 ------- | |
211 sample_estimator : SampleEstimator[Regressor] | |
212 Trained sample estimator. | |
213 feature_importance : FeatureData[Importance] | |
214 Importance of each input feature to model accuracy. | |
215 predictions : SampleData[RegressorPredictions] | |
216 Predicted target values for each input sample. | |
217 model_summary : Visualization | |
218 Summarized parameter and (if enabled) feature selection information for | |
219 the trained estimator. | |
220 accuracy_results : Visualization | |
221 Accuracy results visualization. | |
222 ]]></help> | |
223 <macros> | |
224 <import>qiime_citation.xml</import> | |
225 </macros> | |
226 <expand macro="qiime_citation"/> | |
227 </tool> |