Mercurial > repos > florianbegusch > qiime2_suite
comparison qiime2-2020.8/qiime_longitudinal_feature-volatility.xml @ 20:d93d8888f0b0 draft
Uploaded
author | florianbegusch |
---|---|
date | Fri, 04 Sep 2020 12:44:24 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
19:6c48f8d82424 | 20:d93d8888f0b0 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_longitudinal_feature-volatility" name="qiime longitudinal feature-volatility" | |
3 version="2020.8"> | |
4 <description>Feature volatility analysis</description> | |
5 <requirements> | |
6 <requirement type="package" version="2020.8">qiime2</requirement> | |
7 </requirements> | |
8 <command><![CDATA[ | |
9 qiime longitudinal feature-volatility | |
10 | |
11 --i-table=$itable | |
12 # if $input_files_mmetadatafile: | |
13 # def list_dict_to_string(list_dict): | |
14 # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
15 # for d in list_dict[1:]: | |
16 # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
17 # end for | |
18 # return $file_list | |
19 # end def | |
20 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
21 # end if | |
22 | |
23 #if '__ob__' in str($pstatecolumn): | |
24 #set $pstatecolumn_temp = $pstatecolumn.replace('__ob__', '[') | |
25 #set $pstatecolumn = $pstatecolumn_temp | |
26 #end if | |
27 #if '__cb__' in str($pstatecolumn): | |
28 #set $pstatecolumn_temp = $pstatecolumn.replace('__cb__', ']') | |
29 #set $pstatecolumn = $pstatecolumn_temp | |
30 #end if | |
31 #if 'X' in str($pstatecolumn): | |
32 #set $pstatecolumn_temp = $pstatecolumn.replace('X', '\\') | |
33 #set $pstatecolumn = $pstatecolumn_temp | |
34 #end if | |
35 #if '__sq__' in str($pstatecolumn): | |
36 #set $pstatecolumn_temp = $pstatecolumn.replace('__sq__', "'") | |
37 #set $pstatecolumn = $pstatecolumn_temp | |
38 #end if | |
39 #if '__db__' in str($pstatecolumn): | |
40 #set $pstatecolumn_temp = $pstatecolumn.replace('__db__', '"') | |
41 #set $pstatecolumn = $pstatecolumn_temp | |
42 #end if | |
43 | |
44 --p-state-column=$pstatecolumn | |
45 | |
46 | |
47 #if '__ob__' in str($pindividualidcolumn): | |
48 #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__ob__', '[') | |
49 #set $pindividualidcolumn = $pindividualidcolumn_temp | |
50 #end if | |
51 #if '__cb__' in str($pindividualidcolumn): | |
52 #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__cb__', ']') | |
53 #set $pindividualidcolumn = $pindividualidcolumn_temp | |
54 #end if | |
55 #if 'X' in str($pindividualidcolumn): | |
56 #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('X', '\\') | |
57 #set $pindividualidcolumn = $pindividualidcolumn_temp | |
58 #end if | |
59 #if '__sq__' in str($pindividualidcolumn): | |
60 #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__sq__', "'") | |
61 #set $pindividualidcolumn = $pindividualidcolumn_temp | |
62 #end if | |
63 #if '__db__' in str($pindividualidcolumn): | |
64 #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__db__', '"') | |
65 #set $pindividualidcolumn = $pindividualidcolumn_temp | |
66 #end if | |
67 | |
68 #if str($pindividualidcolumn): | |
69 --p-individual-id-column=$pindividualidcolumn | |
70 #end if | |
71 | |
72 --p-cv=$pcv | |
73 | |
74 #if str($prandomstate): | |
75 --p-random-state=$prandomstate | |
76 #end if | |
77 --p-n-jobs=$pnjobs | |
78 | |
79 --p-n-estimators=$pnestimators | |
80 | |
81 #if str($pestimator) != 'None': | |
82 --p-estimator=$pestimator | |
83 #end if | |
84 | |
85 #if $pparametertuning: | |
86 --p-parameter-tuning | |
87 #end if | |
88 | |
89 #if str($pmissingsamples) != 'None': | |
90 --p-missing-samples=$pmissingsamples | |
91 #end if | |
92 | |
93 #if str($pimportancethreshold) != 'None': | |
94 --p-importance-threshold=$pimportancethreshold | |
95 #end if | |
96 | |
97 #if str($pfeaturecount) != 'None': | |
98 --p-feature-count=$pfeaturecount | |
99 #end if | |
100 | |
101 --o-filtered-table=ofilteredtable | |
102 | |
103 --o-feature-importance=ofeatureimportance | |
104 | |
105 --o-volatility-plot=ovolatilityplot | |
106 | |
107 --o-accuracy-results=oaccuracyresults | |
108 | |
109 --o-sample-estimator=osampleestimator | |
110 | |
111 #if str($examples) != 'None': | |
112 --examples=$examples | |
113 #end if | |
114 | |
115 ; | |
116 cp osampleestimator.qza $osampleestimator | |
117 | |
118 ]]></command> | |
119 <inputs> | |
120 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> | |
121 <repeat name="input_files_mmetadatafile" optional="False" title="--m-metadata-file"> | |
122 <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA... (multiple Sample metadata file containing arguments will be individual-id-column. merged) [required]" name="additional_input" optional="False" type="data" /> | |
123 </repeat> | |
124 <param label="--p-state-column: TEXT Metadata containing collection time (state) values for each sample. Must contain exclusively numeric values. [required]" name="pstatecolumn" optional="False" type="text" /> | |
125 <param label="--p-individual-id-column: TEXT Metadata column containing IDs for individual subjects. [optional]" name="pindividualidcolumn" optional="False" type="text" /> | |
126 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> | |
127 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> | |
128 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> | |
129 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
130 <option selected="True" value="None">Selection is Optional</option> | |
131 <option value="RandomForestRegressor">RandomForestRegressor</option> | |
132 <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> | |
133 <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> | |
134 <option value="AdaBoostRegressor">AdaBoostRegressor</option> | |
135 <option value="ElasticNet">ElasticNet</option> | |
136 <option value="Ridge">Ridge</option> | |
137 <option value="Lasso">Lasso</option> | |
138 <option value="KNeighborsRegressor">KNeighborsRegressor</option> | |
139 <option value="LinearSVR">LinearSVR</option> | |
140 <option value="SVR">SVR</option> | |
141 </param> | |
142 <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> | |
143 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
144 <option selected="True" value="None">Selection is Optional</option> | |
145 <option value="error">error</option> | |
146 <option value="ignore">ignore</option> | |
147 </param> | |
148 <param label="--p-importance-threshold: " name="pimportancethreshold" optional="True" type="select"> | |
149 <option selected="True" value="None">Selection is Optional</option> | |
150 <option value="Float % Range(0">Float % Range(0</option> | |
151 <option value="None">None</option> | |
152 <option value="inclusive_start=False">inclusive_start=False</option> | |
153 </param> | |
154 <param label="--p-feature-count: " name="pfeaturecount" optional="True" type="select"> | |
155 <option selected="True" value="None">Selection is Optional</option> | |
156 <option value="Int % Range(1">Int % Range(1</option> | |
157 <option value="None">None</option> | |
158 </param> | |
159 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> | |
160 | |
161 </inputs> | |
162 | |
163 <outputs> | |
164 <data format="qza" label="${tool.name} on ${on_string}: filteredtable.qza" name="ofilteredtable" /> | |
165 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> | |
166 <data format="html" label="${tool.name} on ${on_string}: volatilityplot.html" name="ovolatilityplot" /> | |
167 <data format="html" label="${tool.name} on ${on_string}: accuracyresults.html" name="oaccuracyresults" /> | |
168 <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator" /> | |
169 | |
170 </outputs> | |
171 | |
172 <help><![CDATA[ | |
173 Feature volatility analysis | |
174 ############################################################### | |
175 | |
176 Identify features that are predictive of a numeric metadata column, | |
177 state_column (e.g., time), and plot their relative frequencies across | |
178 states using interactive feature volatility plots. A supervised learning | |
179 regressor is used to identify important features and assess their ability | |
180 to predict sample states. state_column will typically be a measure of time, | |
181 but any numeric metadata column can be used. | |
182 | |
183 Parameters | |
184 ---------- | |
185 table : FeatureTable[Frequency] | |
186 Feature table containing all features that should be used for target | |
187 prediction. | |
188 metadata : Metadata | |
189 Sample metadata file containing individual_id_column. | |
190 state_column : Str | |
191 Metadata containing collection time (state) values for each sample. | |
192 Must contain exclusively numeric values. | |
193 individual_id_column : Str, optional | |
194 Metadata column containing IDs for individual subjects. | |
195 cv : Int % Range(1, None), optional | |
196 Number of k-fold cross-validations to perform. | |
197 random_state : Int, optional | |
198 Seed used by random number generator. | |
199 n_jobs : Int, optional | |
200 Number of jobs to run in parallel. | |
201 n_estimators : Int % Range(1, None), optional | |
202 Number of trees to grow for estimation. More trees will improve | |
203 predictive accuracy up to a threshold level, but will also increase | |
204 time and memory requirements. This parameter only affects ensemble | |
205 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
206 GradientBoosting. | |
207 estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional | |
208 Estimator method to use for sample prediction. | |
209 parameter_tuning : Bool, optional | |
210 Automatically tune hyperparameters using random grid search. | |
211 missing_samples : Str % Choices('error', 'ignore'), optional | |
212 How to handle missing samples in metadata. "error" will fail if missing | |
213 samples are detected. "ignore" will cause the feature table and | |
214 metadata to be filtered, so that only samples found in both files are | |
215 retained. | |
216 importance_threshold : Float % Range(0, None, inclusive_start=False) | Str % Choices('q1', 'q2', 'q3'), optional | |
217 Filter feature table to exclude any features with an importance score | |
218 less than this threshold. Set to "q1", "q2", or "q3" to select the | |
219 first, second, or third quartile of values. Set to "None" to disable | |
220 this filter. | |
221 feature_count : Int % Range(1, None) | Str % Choices('all'), optional | |
222 Filter feature table to include top N most important features. Set to | |
223 "all" to include all features. | |
224 | |
225 Returns | |
226 ------- | |
227 filtered_table : FeatureTable[RelativeFrequency] | |
228 Feature table containing only important features. | |
229 feature_importance : FeatureData[Importance] | |
230 Importance of each input feature to model accuracy. | |
231 volatility_plot : Visualization | |
232 Interactive volatility plot visualization. | |
233 accuracy_results : Visualization | |
234 Accuracy results visualization. | |
235 sample_estimator : SampleEstimator[Regressor] | |
236 Trained sample regressor. | |
237 ]]></help> | |
238 <macros> | |
239 <import>qiime_citation.xml</import> | |
240 </macros> | |
241 <expand macro="qiime_citation"/> | |
242 </tool> |