Mercurial > repos > florianbegusch > qiime2_suite
comparison qiime2-2020.8/qiime_sample-classifier_fit-classifier.xml @ 20:d93d8888f0b0 draft
Uploaded
author | florianbegusch |
---|---|
date | Fri, 04 Sep 2020 12:44:24 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
19:6c48f8d82424 | 20:d93d8888f0b0 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_sample-classifier_fit-classifier" name="qiime sample-classifier fit-classifier" | |
3 version="2020.8"> | |
4 <description>Fit a supervised learning classifier.</description> | |
5 <requirements> | |
6 <requirement type="package" version="2020.8">qiime2</requirement> | |
7 </requirements> | |
8 <command><![CDATA[ | |
9 qiime sample-classifier fit-classifier | |
10 | |
11 --i-table=$itable | |
12 # if $input_files_mmetadatafile: | |
13 # def list_dict_to_string(list_dict): | |
14 # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
15 # for d in list_dict[1:]: | |
16 # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
17 # end for | |
18 # return $file_list | |
19 # end def | |
20 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
21 # end if | |
22 | |
23 #if '__ob__' in str($mmetadatacolumn): | |
24 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__ob__', '[') | |
25 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
26 #end if | |
27 #if '__cb__' in str($mmetadatacolumn): | |
28 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__cb__', ']') | |
29 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
30 #end if | |
31 #if 'X' in str($mmetadatacolumn): | |
32 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('X', '\\') | |
33 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
34 #end if | |
35 #if '__sq__' in str($mmetadatacolumn): | |
36 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__sq__', "'") | |
37 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
38 #end if | |
39 #if '__db__' in str($mmetadatacolumn): | |
40 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__db__', '"') | |
41 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
42 #end if | |
43 | |
44 --m-metadata-column=$mmetadatacolumn | |
45 | |
46 | |
47 --p-step=$pstep | |
48 | |
49 --p-cv=$pcv | |
50 | |
51 #if str($prandomstate): | |
52 --p-random-state=$prandomstate | |
53 #end if | |
54 --p-n-jobs=$pnjobs | |
55 | |
56 --p-n-estimators=$pnestimators | |
57 | |
58 #if str($pestimator) != 'None': | |
59 --p-estimator=$pestimator | |
60 #end if | |
61 | |
62 #if $poptimizefeatureselection: | |
63 --p-optimize-feature-selection | |
64 #end if | |
65 | |
66 #if $pparametertuning: | |
67 --p-parameter-tuning | |
68 #end if | |
69 | |
70 #if str($pmissingsamples) != 'None': | |
71 --p-missing-samples=$pmissingsamples | |
72 #end if | |
73 | |
74 --o-sample-estimator=osampleestimator | |
75 | |
76 --o-feature-importance=ofeatureimportance | |
77 | |
78 #if str($examples) != 'None': | |
79 --examples=$examples | |
80 #end if | |
81 | |
82 ; | |
83 cp ofeatureimportance.qza $ofeatureimportance | |
84 | |
85 ]]></command> | |
86 <inputs> | |
87 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> | |
88 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> | |
89 <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA" name="additional_input" optional="True" type="data" /> | |
90 </repeat> | |
91 <param label="--m-metadata-column: COLUMN MetadataColumn[Categorical] Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text" /> | |
92 <param exclude_min="True" label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" max="1.0" min="0.0" name="pstep" optional="True" type="float" value="0.05" /> | |
93 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> | |
94 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> | |
95 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> | |
96 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
97 <option selected="True" value="None">Selection is Optional</option> | |
98 <option value="RandomForestClassifier">RandomForestClassifier</option> | |
99 <option value="ExtraTreesClassifier">ExtraTreesClassifier</option> | |
100 <option value="GradientBoostingClassifier">GradientBoostingClassifier</option> | |
101 <option value="AdaBoostClassifier">AdaBoostClassifier</option> | |
102 <option value="KNeighborsClassifier">KNeighborsClassifier</option> | |
103 <option value="LinearSVC">LinearSVC</option> | |
104 <option value="SVC">SVC</option> | |
105 </param> | |
106 <param label="--p-optimize-feature-selection: --p-optimize-feature-selection: / --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean" /> | |
107 <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> | |
108 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
109 <option selected="True" value="None">Selection is Optional</option> | |
110 <option value="error">error</option> | |
111 <option value="ignore">ignore</option> | |
112 </param> | |
113 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> | |
114 | |
115 </inputs> | |
116 | |
117 <outputs> | |
118 <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator" /> | |
119 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> | |
120 | |
121 </outputs> | |
122 | |
123 <help><![CDATA[ | |
124 Fit a supervised learning classifier. | |
125 ############################################################### | |
126 | |
127 Fit a supervised learning classifier. Outputs the fit estimator (for | |
128 prediction of test samples and/or unknown samples) and the relative | |
129 importance of each feature for model accuracy. Optionally use k-fold cross- | |
130 validation for automatic recursive feature elimination and hyperparameter | |
131 tuning. | |
132 | |
133 Parameters | |
134 ---------- | |
135 table : FeatureTable[Frequency] | |
136 Feature table containing all features that should be used for target | |
137 prediction. | |
138 metadata : MetadataColumn[Categorical] | |
139 Numeric metadata column to use as prediction target. | |
140 step : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
141 If optimize_feature_selection is True, step is the percentage of | |
142 features to remove at each iteration. | |
143 cv : Int % Range(1, None), optional | |
144 Number of k-fold cross-validations to perform. | |
145 random_state : Int, optional | |
146 Seed used by random number generator. | |
147 n_jobs : Int, optional | |
148 Number of jobs to run in parallel. | |
149 n_estimators : Int % Range(1, None), optional | |
150 Number of trees to grow for estimation. More trees will improve | |
151 predictive accuracy up to a threshold level, but will also increase | |
152 time and memory requirements. This parameter only affects ensemble | |
153 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
154 GradientBoosting. | |
155 estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional | |
156 Estimator method to use for sample prediction. | |
157 optimize_feature_selection : Bool, optional | |
158 Automatically optimize input feature selection using recursive feature | |
159 elimination. | |
160 parameter_tuning : Bool, optional | |
161 Automatically tune hyperparameters using random grid search. | |
162 missing_samples : Str % Choices('error', 'ignore'), optional | |
163 How to handle missing samples in metadata. "error" will fail if missing | |
164 samples are detected. "ignore" will cause the feature table and | |
165 metadata to be filtered, so that only samples found in both files are | |
166 retained. | |
167 | |
168 Returns | |
169 ------- | |
170 sample_estimator : SampleEstimator[Classifier] | |
171 Trained sample classifier. | |
172 feature_importance : FeatureData[Importance] | |
173 Importance of each input feature to model accuracy. | |
174 ]]></help> | |
175 <macros> | |
176 <import>qiime_citation.xml</import> | |
177 </macros> | |
178 <expand macro="qiime_citation"/> | |
179 </tool> |