Mercurial > repos > florianbegusch > qiime2_suite
comparison qiime2-2020.8/qiime_sample-classifier_fit-regressor.xml @ 20:d93d8888f0b0 draft
Uploaded
author | florianbegusch |
---|---|
date | Fri, 04 Sep 2020 12:44:24 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
19:6c48f8d82424 | 20:d93d8888f0b0 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_sample-classifier_fit-regressor" name="qiime sample-classifier fit-regressor" | |
3 version="2020.8"> | |
4 <description>Fit a supervised learning regressor.</description> | |
5 <requirements> | |
6 <requirement type="package" version="2020.8">qiime2</requirement> | |
7 </requirements> | |
8 <command><![CDATA[ | |
9 qiime sample-classifier fit-regressor | |
10 | |
11 --i-table=$itable | |
12 # if $input_files_mmetadatafile: | |
13 # def list_dict_to_string(list_dict): | |
14 # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
15 # for d in list_dict[1:]: | |
16 # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
17 # end for | |
18 # return $file_list | |
19 # end def | |
20 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
21 # end if | |
22 | |
23 #if '__ob__' in str($mmetadatacolumn): | |
24 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__ob__', '[') | |
25 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
26 #end if | |
27 #if '__cb__' in str($mmetadatacolumn): | |
28 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__cb__', ']') | |
29 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
30 #end if | |
31 #if 'X' in str($mmetadatacolumn): | |
32 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('X', '\\') | |
33 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
34 #end if | |
35 #if '__sq__' in str($mmetadatacolumn): | |
36 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__sq__', "'") | |
37 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
38 #end if | |
39 #if '__db__' in str($mmetadatacolumn): | |
40 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__db__', '"') | |
41 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
42 #end if | |
43 | |
44 --m-metadata-column=$mmetadatacolumn | |
45 | |
46 | |
47 --p-step=$pstep | |
48 | |
49 --p-cv=$pcv | |
50 | |
51 #if str($prandomstate): | |
52 --p-random-state=$prandomstate | |
53 #end if | |
54 --p-n-jobs=$pnjobs | |
55 | |
56 --p-n-estimators=$pnestimators | |
57 | |
58 #if str($pestimator) != 'None': | |
59 --p-estimator=$pestimator | |
60 #end if | |
61 | |
62 #if $poptimizefeatureselection: | |
63 --p-optimize-feature-selection | |
64 #end if | |
65 | |
66 #if $pparametertuning: | |
67 --p-parameter-tuning | |
68 #end if | |
69 | |
70 #if str($pmissingsamples) != 'None': | |
71 --p-missing-samples=$pmissingsamples | |
72 #end if | |
73 | |
74 --o-sample-estimator=osampleestimator | |
75 | |
76 --o-feature-importance=ofeatureimportance | |
77 | |
78 #if str($examples) != 'None': | |
79 --examples=$examples | |
80 #end if | |
81 | |
82 ; | |
83 cp ofeatureimportance.qza $ofeatureimportance | |
84 | |
85 ]]></command> | |
86 <inputs> | |
87 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> | |
88 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> | |
89 <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA" name="additional_input" optional="True" type="data" /> | |
90 </repeat> | |
91 <param label="--m-metadata-column: COLUMN MetadataColumn[Numeric] Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text" /> | |
92 <param exclude_min="True" label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" max="1.0" min="0.0" name="pstep" optional="True" type="float" value="0.05" /> | |
93 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> | |
94 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> | |
95 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> | |
96 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
97 <option selected="True" value="None">Selection is Optional</option> | |
98 <option value="RandomForestRegressor">RandomForestRegressor</option> | |
99 <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> | |
100 <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> | |
101 <option value="AdaBoostRegressor">AdaBoostRegressor</option> | |
102 <option value="ElasticNet">ElasticNet</option> | |
103 <option value="Ridge">Ridge</option> | |
104 <option value="Lasso">Lasso</option> | |
105 <option value="KNeighborsRegressor">KNeighborsRegressor</option> | |
106 <option value="LinearSVR">LinearSVR</option> | |
107 <option value="SVR">SVR</option> | |
108 </param> | |
109 <param label="--p-optimize-feature-selection: --p-optimize-feature-selection: / --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean" /> | |
110 <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> | |
111 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
112 <option selected="True" value="None">Selection is Optional</option> | |
113 <option value="error">error</option> | |
114 <option value="ignore">ignore</option> | |
115 </param> | |
116 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> | |
117 | |
118 </inputs> | |
119 | |
120 <outputs> | |
121 <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator" /> | |
122 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> | |
123 | |
124 </outputs> | |
125 | |
126 <help><![CDATA[ | |
127 Fit a supervised learning regressor. | |
128 ############################################################### | |
129 | |
130 Fit a supervised learning regressor. Outputs the fit estimator (for | |
131 prediction of test samples and/or unknown samples) and the relative | |
132 importance of each feature for model accuracy. Optionally use k-fold cross- | |
133 validation for automatic recursive feature elimination and hyperparameter | |
134 tuning. | |
135 | |
136 Parameters | |
137 ---------- | |
138 table : FeatureTable[Frequency] | |
139 Feature table containing all features that should be used for target | |
140 prediction. | |
141 metadata : MetadataColumn[Numeric] | |
142 Numeric metadata column to use as prediction target. | |
143 step : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
144 If optimize_feature_selection is True, step is the percentage of | |
145 features to remove at each iteration. | |
146 cv : Int % Range(1, None), optional | |
147 Number of k-fold cross-validations to perform. | |
148 random_state : Int, optional | |
149 Seed used by random number generator. | |
150 n_jobs : Int, optional | |
151 Number of jobs to run in parallel. | |
152 n_estimators : Int % Range(1, None), optional | |
153 Number of trees to grow for estimation. More trees will improve | |
154 predictive accuracy up to a threshold level, but will also increase | |
155 time and memory requirements. This parameter only affects ensemble | |
156 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
157 GradientBoosting. | |
158 estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional | |
159 Estimator method to use for sample prediction. | |
160 optimize_feature_selection : Bool, optional | |
161 Automatically optimize input feature selection using recursive feature | |
162 elimination. | |
163 parameter_tuning : Bool, optional | |
164 Automatically tune hyperparameters using random grid search. | |
165 missing_samples : Str % Choices('error', 'ignore'), optional | |
166 How to handle missing samples in metadata. "error" will fail if missing | |
167 samples are detected. "ignore" will cause the feature table and | |
168 metadata to be filtered, so that only samples found in both files are | |
169 retained. | |
170 | |
171 Returns | |
172 ------- | |
173 sample_estimator : SampleEstimator[Regressor] | |
174 feature_importance : FeatureData[Importance] | |
175 Importance of each input feature to model accuracy. | |
176 ]]></help> | |
177 <macros> | |
178 <import>qiime_citation.xml</import> | |
179 </macros> | |
180 <expand macro="qiime_citation"/> | |
181 </tool> |