Mercurial > repos > florianbegusch > qiime2_suite
diff qiime2/qiime_sample-classifier_fit-regressor.xml @ 0:370e0b6e9826 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 17 Jul 2019 03:05:17 -0400 |
parents | |
children | a025a4a89e07 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/qiime2/qiime_sample-classifier_fit-regressor.xml Wed Jul 17 03:05:17 2019 -0400 @@ -0,0 +1,161 @@ +<?xml version="1.0" ?> +<tool id="qiime_sample-classifier_fit-regressor" name="qiime sample-classifier fit-regressor" version="2019.4"> + <description> - Fit a supervised learning regressor.</description> + <requirements> + <requirement type="package" version="2019.4">qiime2</requirement> + </requirements> + <command><![CDATA[ +qiime sample-classifier fit-regressor + +--i-table=$itable +--m-metadata-column="$mmetadatacolumn" + +#if $pstep: + --p-step=$pstep +#end if + +#if $pcv: + --p-cv=$pcv +#end if + +#if str($prandomstate): + --p-random-state="$prandomstate" +#end if + +#set $pnjobs = '${GALAXY_SLOTS:-4}' +#if str($pnjobs): + --p-n-jobs="$pnjobs" +#end if + + +#if $pnestimators: + --p-n-estimators=$pnestimators +#end if + +#if str($pestimator) != 'None': + --p-estimator=$pestimator +#end if + +#if $poptimizefeatureselection: + --p-optimize-feature-selection +#end if + +#if $pparametertuning: + --p-parameter-tuning +#end if + +#if str($pmissingsamples) != 'None': + --p-missing-samples=$pmissingsamples +#end if + + +#if $input_files_mmetadatafile: +#def list_dict_to_string(list_dict): + #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') + #for d in list_dict[1:]: + #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') + #end for + #return $file_list +#end def + --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) +#end if + + +--o-sample-estimator=osampleestimator +--o-feature-importance=ofeatureimportance +; +cp osampleestimator.qza $osampleestimator; +cp ofeatureimportance.qza $ofeatureimportance + ]]></command> + <inputs> + <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> + <param label="--m-metadata-column: COLUMN MetadataColumn[Numeric] Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/> + <param label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" value="0.05" min="0" max="1" exclusive_start="True"/> + <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" name="pcv" optional="True" type="integer" value="5" min="1"/> + <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="integer"/> + <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" value="100" min="1"/> + <param label="--p-estimator: " name="pestimator" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="RandomForestRegressor">RandomForestRegressor</option> + <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> + <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> + <option value="AdaBoostRegressor">AdaBoostRegressor</option> + <option value="ElasticNet">ElasticNet</option> + <option value="Ridge">Ridge</option> + <option value="Lasso">Lasso</option> + <option value="KNeighborsRegressor">KNeighborsRegressor</option> + <option value="LinearSVR">LinearSVR</option> + <option value="SVR">SVR</option> + </param> + <param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean"/> + <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean"/> + <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="error">error</option> + <option value="ignore">ignore</option> + </param> + + <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> + <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> + </repeat> + + </inputs> + <outputs> + <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator"/> + <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance"/> + </outputs> + <help><![CDATA[ +Fit a supervised learning regressor. +#################################### + +Fit a supervised learning regressor. Outputs the fit estimator (for +prediction of test samples and/or unknown samples) and the relative +importance of each feature for model accuracy. Optionally use k-fold cross- +validation for automatic recursive feature elimination and hyperparameter +tuning. + +Parameters +---------- +table : FeatureTable[Frequency] + Feature table containing all features that should be used for target + prediction. +metadata : MetadataColumn[Numeric] + Numeric metadata column to use as prediction target. +step : Float % Range(0.0, 1.0, inclusive_start=False), optional + If optimize_feature_selection is True, step is the percentage of + features to remove at each iteration. +cv : Int % Range(1, None), optional + Number of k-fold cross-validations to perform. +random_state : Int, optional + Seed used by random number generator. +n_estimators : Int % Range(1, None), optional + Number of trees to grow for estimation. More trees will improve + predictive accuracy up to a threshold level, but will also increase + time and memory requirements. This parameter only affects ensemble + estimators, such as Random Forest, AdaBoost, ExtraTrees, and + GradientBoosting. +estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional + Estimator method to use for sample prediction. +optimize_feature_selection : Bool, optional + Automatically optimize input feature selection using recursive feature + elimination. +parameter_tuning : Bool, optional + Automatically tune hyperparameters using random grid search. +missing_samples : Str % Choices('error', 'ignore'), optional + How to handle missing samples in metadata. "error" will fail if missing + samples are detected. "ignore" will cause the feature table and + metadata to be filtered, so that only samples found in both files are + retained. + +Returns +------- +sample_estimator : SampleEstimator[Regressor] + \ +feature_importance : FeatureData[Importance] + Importance of each input feature to model accuracy. + ]]></help> +<macros> + <import>qiime_citation.xml</import> +</macros> +<expand macro="qiime_citation"/> +</tool>