Mercurial > repos > florianbegusch > qiime2_suite
diff qiime2/qiime_sample-classifier_metatable.xml @ 0:370e0b6e9826 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 17 Jul 2019 03:05:17 -0400 |
parents | |
children | f190567fe3f6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/qiime2/qiime_sample-classifier_metatable.xml Wed Jul 17 03:05:17 2019 -0400 @@ -0,0 +1,107 @@ +<?xml version="1.0" ?> +<tool id="qiime_sample-classifier_metatable" name="qiime sample-classifier metatable" version="2019.4"> + <description> - Convert (and merge) positive numeric metadata (in)to feature table.</description> + <requirements> + <requirement type="package" version="2019.4">qiime2</requirement> + </requirements> + <command><![CDATA[ +qiime sample-classifier metatable + + +#if str($itable) != 'None': + --i-table=$itable +#end if + +#if str($pmissingsamples) != 'None': + --p-missing-samples=$pmissingsamples +#end if + +#if str($pmissingvalues) != 'None': + --p-missing-values=$pmissingvalues +#end if + + +#if $input_files_mmetadatafile: +#def list_dict_to_string(list_dict): + #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') + #for d in list_dict[1:]: + #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') + #end for + #return $file_list +#end def + --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) +#end if + + +--o-converted-table=oconvertedtable +; +cp oconvertedtable.qza $oconvertedtable + ]]></command> + <inputs> + <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [optional]" name="itable" optional="True" type="data"/> + <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="error">error</option> + <option value="ignore">ignore</option> + </param> + <param label="--p-missing-values: " name="pmissingvalues" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="drop_samples">drop_samples</option> + <option value="drop_features">drop_features</option> + <option value="error">error</option> + <option value="fill">fill</option> + </param> + + <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> + <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> + </repeat> + + </inputs> + <outputs> + <data format="qza" label="${tool.name} on ${on_string}: convertedtable.qza" name="oconvertedtable"/> + </outputs> + <help><![CDATA[ +Convert (and merge) positive numeric metadata (in)to feature table. +################################################################### + +Convert numeric sample metadata from TSV file into a feature table. +Optionally merge with an existing feature table. Only numeric metadata will +be converted; categorical columns will be silently dropped. By default, if +a table is used as input only samples found in both the table and metadata +(intersection) are merged, and others are silently dropped. Set +missing_samples="error" to raise an error if samples found in the table are +missing from the metadata file. The metadata file can always contain a +superset of samples. Note that columns will be dropped if they are non- +numeric, contain only unique values, contain no unique values (zero +variance), contain only empty cells, or contain negative values. This +method currently only converts postive numeric metadata into feature data. +Tip: convert categorical columns to dummy variables to include them in the +output feature table. + +Parameters +---------- +metadata : Metadata + Metadata file to convert to feature table. +table : FeatureTable[Frequency], optional + Feature table containing all features that should be used for target + prediction. +missing_samples : Str % Choices('error', 'ignore'), optional + How to handle missing samples in metadata. "error" will fail if missing + samples are detected. "ignore" will cause the feature table and + metadata to be filtered, so that only samples found in both files are + retained. +missing_values : Str % Choices('drop_samples', 'drop_features', 'error', 'fill'), optional + How to handle missing values (nans) in metadata. Either "drop_samples" + with missing values, "drop_features" with missing values, "fill" + missing values with zeros, or "error" if any missing values are found. + +Returns +------- +converted_table : FeatureTable[Frequency] + Converted feature table + ]]></help> +<macros> + <import>qiime_citation.xml</import> +</macros> +<expand macro="qiime_citation"/> +</tool>